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The qualitative and quantitative analysis of numerical methods for delay dif-
ferential equations is now quite well understood, as reflected in the recent
monograph by Bellen and Zennaro (2003). This is in remarkable contrast
to the situation in the numerical analysis of functional equations, in which
delays occur in connection with memory terms described by Volterra integ-
ral operators. The complexity of the convergence and asymptotic stability
analyses has its roots in new ‘dimensions’ not present in DDEs: the prob-
lems have distributed delays; kernels in the Volterra operators may be weakly
singular; a second discretization step (approximation of the memory term
by feasible quadrature processes) will in general be necessary before solution
approximations can be computed.

The purpose of this review is to introduce the reader to functional integral
and integro-differential equations of Volterra type and their discretization,
focusing on collocation techniques; to describe the ‘state of the art’ in the
numerical analysis of such problems; and to show that – especially for many
‘classical’ equations whose analysis dates back more than 100 years – we still
have a long way to go before we reach a level of insight into their discretized
versions to compare with that achieved for DDEs.
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1. Introduction

1.1. Early Volterra functional integral equations

1.1.1. Volterra integral equations with proportional delays

In his paper of 1897 (a sequel to his four fundamental papers that appeared
in 1896), Vito Volterra studied the ‘invertibility’ of the ‘definite integral’
(using his notation)

f(y) − f(0) =

∫ y

αy
θ(x)H(x, y) dx, 0 < y < a, (1.1)

where 0 < α < 1; the functions f , f ′, H, Hy are assumed to be continuous
on their respective domains. The integral operator describing this first-
kind integral equation has two variables of integration, and the lower limit
represents a proportional delay vanishing at t = 0.

Volterra preceded the analysis of the existence and uniqueness of the
solution θ ∈ C[0, a] by the following observation (Volterra 1897, pp. 156–
157). Suppose that the given (real-valued) functions λ and ϕ are continuous
on [0, a], with |λ(0)| ≤ 1, and consider the infinite series

θ(x) := ϕ(x) +

∞∑

j=1

αj

(
j−1
∏

l=0

λ(αlx)

)

ϕ(αjx), x ∈ [0, a]. (1.2)

This series converges uniformly, and hence its limit θ lies in C[0, a]. On
the other hand, if θ ∈ C[0, a] is given, replacing x in (1.2) by αx and then
multiplying by αλ(x) readily leads to an expression for the unknown ϕ,

θ(x) − αλ(x)θ(αx) = ϕ(x), x ∈ [0, a]. (1.3)

In other words, the pair of equations (1.2) and (1.3) are reciprocal to each
other. This observation was then used by Volterra to establish the desired



result for the delay integral equation (1.1) in a rather elegant way. We shall
encounter (1.3) again later, as a special case of (2.12); see also Liu (1995b).

Volterra’s analysis – which relies on Picard iteration techniques – was
extended by Lalesco (1908, 1911) (see also Volterra (1913, pp. 92–101) and
Fenyö and Stolle (1984, pp. 324–327)) to first-kind integral equations with
more general vanishing delays, and by Andreoli (1913, 1914) to closely re-
lated integral equations of the second kind,

ϕ(x) + λ

∫ g(x)

0
N(x, y)ϕ(x) dx = f(x), x ∈ [0, a]. (1.4)

Andreoli observed that ‘la g(x) avrà un’enorme influenza sulle formole di

soluzione . . . ’ (the truth of this visionary remark regarding the analysis of
discretized versions of such equations – especially when g(x) = αx (0 < α <
1) – will become apparent in Section 4.2!), and he illustrated it by means
of two examples: g(x) = αx (0 < α < 1) and g(x) = xm (m > 0; x ∈ [0, 1]).

1.1.2. The Volterra delay VIDEs of population dynamics

In Part IV (‘Studio delle azioni ereditarie’) of his 1927 paper Volterra refined
his earlier celebrated (ODE) ‘predator–prey’ model to include situations
where ‘historical actions cease after a certain interval of time’ (see also
Volterra (1939, p. 8)). This leads to a system of nonlinear Volterra integro-
differential equations with constant delay T0 > 0 (again using Volterra’s
notation),

dN1

dt
= N1(t)

(

ε1 − γ1N2(t) −
∫ t

t−T0

F1(t − τ)N1(τ) dτ

)

, (1.5)

dN2

dt
= N2(t)

(

−ε2 + γ2N1(t) +

∫ t

t−T0

F2(t − τ)N2(τ) dτ

)

,

with εi > 0, γi ≥ 0, and continuous Fi(t) ≥ 0. Volterra later extended this
model and its analysis to n interacting populations (see also his survey paper
of 1939). Cushing (1977) is an excellent source on the further development
of such population models based on VIDEs with delays; see also Bocharov
and Rihan (2000) and its bibliography.

1.2. Volterra functional equations as mathematical models

Many basic mathematical models in epidemiology and population growth
(Cooke and Yorke 1973, Waltman 1974, Cooke 1976, Smith 1977, Busen-
berg and Cooke 1980, Metz and Diekmann 1986 (especially Chapter IV),
Hethcote and van den Driessche 2000, Brauer and van den Driessche 2003
(see also the extensive bibliographies in the last two papers)) are described



by nonlinear Volterra integral equations of the second kind with (constant)
delay τ > 0:

y(t) =

∫ t

t−τ
P (t − s)G(s, y(s)) ds + g(t), t > t0, (1.6)

or

y(t) =

∫ t

t−τ
P (t − s)G(y(s) + g(s)) ds, t > t0. (1.7)

Here, g is usually assumed to be such that limt→∞ g(t) =: g(∞) exists.
These delay integral equations model the deterministic growth of a popula-
tion y = y(t) (e.g., of animals, or cells) or the spread of an epidemic with
immigration into the population; it also has applications in economics.

A generalization of the above model is discussed in Bélair (1991): here,
the delay τ in the delay (or lag) function θ(t) := t − τ(y(t)) (life span) is
no longer constant but depends on the size y(t) of the population at time t
(reflecting, e.g., crowding effects). Bélair’s model corresponds to the delay
VIE with state-dependent delay,

y(t) =

∫ t

t−τ(y(t))
P (t − s)G(y(s)) ds, t > 0, (1.8)

with P (t) ≡ 1. Here it is assumed that the number of births is a function
of the population size only (that is, the birth rate is density-dependent
but not age-dependent). For this choice of the kernel P it is tempting to
‘simplify’ the delay VIE, by differentiating it with respect to t, to obtain
the state-dependent (but ‘local’) DDE

y′(t) =
G(y(t)) − G(y(t − τ(y(t))))

1 − τ ′(y(t))G(y(t − τ(y(t))))
. (1.9)

While any constant y(t) = yc solves the above DDE, this is not true in
the original DVIE (1.8): it is easily verified that y(t) = yc is a solution if
and only if yc = G(yc)τ(yc). This simple example also contains a warning:
the use of the the DDE (1.9) as the basis for the (‘indirect’) numerical
solution of the delay VIE (1.8) may lead to approximations for y(t) that do
not correctly reflect the dynamics of the original (highly nonlinear) delay
integral equation.

The elastic motions of a three-degree-of-freedom airfoil section with a flap
in a two-dimensional incompressible flow can be described by a system of
neutral functional integro-differential equations of the form

d

dt

(

A0x(t) −
∫ 0

−τ
A1(s)x(t + s) ds

)

(1.10)

= B0x(t) + B1x(t − τ) +

∫ 0

−τ
K(s)x(t + s) ds + F (t), t > 0,



with x(t) = φ(t) (−τ ≤ t ≤ 0) and τ > 0. Here, the matrices A0, A1(·),
B0, B1 and K(·) in L(Rd) (with d = 8) are given. (Here, L(Rd) denotes
the linear space of all real square matrices of order d.) The matrix A0 is
singular: typically, its last row consists of zeros, and some of the elements

of A1(s) = (a
(1)
ij (s)) are weakly singular, e.g.,

a
(1)
88 (s) = C(s)(−s)−α + p(s), 0 < α < 1,

with smooth c and p. (See Burns, Cliff and Herdmann (1983a, 1983b),
Burns, Herdman and Stech (1983c), Burns, Herdman and Turi (1987, 1990),
and Herdman and Turi (1991) for details on the derivation and the math-
ematical framework of (1.10)).

The NFIDE (1.10) contains two new ingredients that make its analysis
and the analysis of collocation methods significantly more difficult. The first
complication is related to the occurrence of weakly singular kernel functions:
they lead to solutions with unbounded derivatives at t = 0+) and hence,
on uniform meshes, to low order of convergence in collocation methods,
regardless of the degree of the underlying piecewise polynomials. While
there are ways to deal with this problem (compare Section 6.2 and, e.g.,
Chapters 6 and 7 in Brunner (2004b)), it is not yet known how to overcome
it when it occurs in conjunction with the (special) singular matrix A0, since
we are now facing a so-called integro-differential algebraic system (see März
(2002a) for examples and a possible framework for their numerical analysis).
For such problems (even when the kernel K is smooth) the analysis of
numerical methods (based on a generalization of the notion of a numerically

properly formulated DAE; see März (2002a, 2002b) and references) is very
much in its infancy, but the subject of current joint work by R. Lamour,
R. März, C. Tischendorf (Humboldt University, Berlin) and the author.

We conclude this section with a brief survey of the literature on applic-
ations of functional integral and integro-differential equations of Volterra
type. Although this selection is necessarily subjective, taken together with
the information contained in these books and papers (and their bibliograph-
ies) it will serve as a guide to the history and the present state of affairs of
Volterra functional equations.

Starting with population dynamics (one of the major sources of Volterra
integral and integro-differential equations with delay arguments) we mention
the monographs by Volterra (1931), Volterra and d’Ancona (1935), Cushing
(1977), Webb (1985), Brauer and Castillo-Chávez (2001), and Zhao (2003);
the proceedings edited by Schmitt (1972), Metz and Diekmann (1986), and
Ruan, Wolkowicz and Wu (2003); and the survey papers by Cooke and Yorke
(1973), Busenberg and Cooke (1980), Ruan and Wu (1994), and Brauer and
van den Driessche (2003). Among the milestone papers on this subject are
the papers by Volterra (1927, 1928, 1934, 1939), Cooke (1976), Cooke and



Kaplan (1976), Smith (1977), Hethcote and Tudor (1980), Hethcote, Lewis
and van den Driessche (1989), Cañada and Zertiti (1994), Hethcote and van
den Driessche (1995, 2000). In addition, the reader may find it worthwhile
to look at Tychonoff (1938) (for early applications of Volterra functional
equations), Corduneanu and Lakshmikantham (1980) (on functional equa-
tions with unbounded delays), Ruan and Wu (1994) (on non-standard Vol-
terra integro-differential equations), and Thieme and Zhao (2003), not least
because of the numerous additional references contained in these papers.

Detailed treatments (and numerous additional applications) of nonlinear
delay VIEs and VIDEs can be found in Marshall (1979), Lakshmikantham
(1987), Györi and Ladas (1991), Yoshizawa and Kato (1991), Kolmanovskii
and Myshkis (1992), Yatsenko (1995), Hritonenko and Yatsenko (1996),
Piila (1996), Ruan and Wolkowicz (1996), and Corduneanu and Sandberg
(2000). Compare also the papers by Tavernini (1978), and Cahlon and
Nachman (1985), and their lists of references, on Volterra equations with
state-dependent delays. The second chapter in Vogel (1965) contains an
illuminating survey of the historical development of Volterra equations with
delays and corresponding detailed references. Finally, the recent monograph
by Ito and Kappel (2002) is the authoritative source for information on the
mathematical framework for, and applications of, neutral functional integro-
differential equations of the type (1.10).

2. Basic theory of Volterra functional integral equations I:
non-vanishing delays

It goes without saying that a thorough understanding of the quantitat-
ive and qualitative properties of solutions to Volterra functional equations
is essential for the design and the analysis of numerical methods for such
problems. We therefore precede the sections dealing with the analysis of
collocation methods (Sections 3 and 5) by brief sections giving an introduc-
tion to relevant theory of VFIEs, complemented by suggestions for addi-
tional readings. In this section we consider Volterra functional integral and
integro-differential equations with non-vanishing delays.

The reader who – in order to see the subsequent analysis in a wider per-
spective – wishes to acquire a broader knowledge of the theory of delay
differential equations is referred to, e.g., the monographs by Myshkis (1972)
(in Russian, with German translation of 1955), Bellman and Cooke (1963),
El’sgol’ts and Norkin (1973), Kolmanovskii and Myshkis (1992), and – espe-
cially – Hale (1977), Hale and Verduyn Lunel (1993), Diekmann, van Gils,
Verduyn Lunel and Walther (1995), and Wu (1996). Regularity results for
solutions of DDEs may be found in Neves and Feldstein (1976), de Gee
(1985), and Willé and Baker (1992).



2.1. Second-kind Volterra integral equations with non-vanishing delays

The general linear Volterra integral equation with delay θ(t) has the form

y(t) = g(t) + (Vy)(t) + (Vθy)(t), t ∈ (t0, T ]. (2.1)

Here, V : C(I) → C(I) denotes the classical (linear) Volterra integral
operator,

(Vy)(t) :=

∫ t

t0

K1(t, s)y(s) ds, (2.2)

with kernel K1 ∈ C(D), D := {(t, s) : t0 ≤ s ≤ t ≤ T}. The kernel K2 of
the delay integral operator

(Vθy)(t) :=

∫ θ(t)

t0

K2(t, s)y(s) ds (2.3)

is assumed to be continuous in Dθ := {(t, s) : θ(t0) ≤ s ≤ θ(t), t ∈ I},
with I := [t0, T ]. Throughout this and the next section the delay (or lag)
function θ will be subject to the following conditions:

(D1) θ(t) = t − τ(t), with τ ∈ Cd(I) for some d ≥ 0;

(D2) τ(t) ≥ τ0 > 0 for t ∈ I;

(D3) θ is strictly increasing on I.

We will refer to the function τ = τ(t) as the delay.

Remark. The subsequent discussion will reveal that condition (D3) has
been introduced mainly to simplify the description and the analysis of the
collocation methods; the recent monograph by (Bellen and Zennaro 2003)
on the numerical solution of DDEs deals with many of the complications
that can arise if (D3) does not hold, providing illuminating examples and
remarks.

We have seen in Section 1.2 that in applications (for example, in math-
ematical models for population growth or the spreading of an epidemic one
encounters delay integral equations of the type

y(t) = g(t) + (Wθy)(t), t ∈ (t0, T ], (2.4)

corresponding to the delay integral operator

(Wθy)(t) :=

∫ t

θ(t)
K(t, s)y(s) ds, (2.5)

or its nonlinear (Hammerstein) version,

(Wθy)(t) :=

∫ t

θ(t)
K(t, s)G(s, y(s)) ds. (2.6)



The (linear) delay equation (2.4) may be viewed as a particular case of (2.1),
obtained formally by setting K2 = −K1 =: −K.

These delay integral equation are complemented, in analogy to DDEs, by
an appropriate initial condition,

y(t) = φ(t), t ∈ [θ(t0), t0].

We observe that, in contrast to initial-value problems for DDEs and DVIDEs
with non-vanishing delays, the interval in which (2.1) and (2.4) are con-
sidered is the left-open interval (t0, T ]: we shall see below (Theorem 2.1)
that solutions to Volterra integral equations with non-vanishing delays typ-
ically possess a finite (jump) discontinuity at t = t0, while for first-order
DDEs (and DVIDEs) the solution y is continuous at this point, with the
discontinuity occurring in y′.

However, in complete analogy to DDEs the non-vanishing delay τ(·) gives
rise to the primary discontinuity points {ξµ} for the solution y: they are
determined by the recursion

θ(ξµ) = ξµ − τ(ξµ) = ξµ−1, µ ≥ 1, ξµ = t0

(see, for example, Section 2.2 in Bellen and Zennaro (2003)). Condition
(D2) ensures that these discontinuity points have the (uniform) separation
property

ξµ − ξµ−1 = τ(ξµ) ≥ τ0 > 0, for all µ ≥ 1.

This implies that the number of primary discontinuity points in any bounded
interval I remains finite: there is no clustering of the {ξµ}.
Theorem 2.1. Assume that the given functions in (2.1)–(2.3) are continu-
ous on their respective domains and that the delay function θ satisfies the
above conditions (D1)–(D3). Then, for any initial function φ ∈ C[θ(t0), t0],
there exists a unique (bounded) y ∈ C(t0, T ] solving the delay integral
equation (2.1) on (t0, T ] and coinciding with φ on [θ(t0), t0]. In general, this
solution has a finite (jump) discontinuity at t = t0:

lim
t→t+0

y(t) �= lim
t→t−0

y(t) = φ(t0).

The solution is continuous at t = t0 if and only if the initial function is such
that

g(t0) −
∫ t0

θ(t0)
K2(t0, s)φ(s) ds = φ(t0).

Proof. For t ∈ I(µ) := [ξµ, ξµ+1] (µ ≥ 1) the initial-value problem for (2.1)
may be written as a Volterra integral equation of the second kind,

y(t) = gµ(t) +

∫ t

ξµ

K1(t, s)y(s) ds, (2.7)



with gµ(t) := g(t) + Φµ(t) and

Φµ(t) :=

∫ ξµ

t0

K1(t, s)y(s) ds +

∫ θ(t)

t0

K2(t, s)y(s) ds.

For µ = 0 this function is known and given by

Φ0(t) = −
∫ t0

θ(t)
K2(t, s)φ(s) ds, t ∈ I0 := (t0, ξ1];

by our assumptions we have Φ0 ∈ C(I(0)). It follows from the classical
Volterra theory (Volterra (1896, 1913, 1959) and Miller (1971); see also
Brunner and van der Houwen (1986), or Brunner (2004b)) that the integral
equation (2.7) possesses a unique continuous (bounded) solution on each
interval I(µ) (µ ≥ 0).

As for its regularity, we first observe that for µ = 0 (with ξ0 = t0),

lim
t→t+0

y(t) = g(t0) + Φ0(t0) = g(t0) −
∫ t0

θ(t0)
K2(t0, s)φ(s) ds

which, for arbitrary (continuous) data g, K2, φ, will not coincide with the
value φ(t0). For µ ≥ 1 we derive

y(ξ−µ ) = g(ξµ) +

∫ ξµ

t0

K1(ξµ, s)y(s) ds +

∫ θ(ξµ)

t0

K2(ξµ, s)y(s) ds

and

y(ξ+
µ ) = g(ξµ) +

∫ ξµ

t0

K1(ξµ, s)y(s) ds +

∫ θ(ξµ)

t0

K2(ξµ, s)y(s) ds.

Hence,

y(ξ+
µ ) − y(ξ−µ ) = 0,

whenever g, K1, K2 and θ are continuous functions. This completes the
proof of Theorem 2.1.

The solution of a linear Volterra integral equation of the second kind,

y(t) = g(t) +

∫ t

t0

K(t, s)y(s) ds, t ∈ I,

with continuous g and K, can be expressed in term of the resolvent kernel
R = R(t, s) and the nonhomogeneous term g, namely,

y(t) = g(t) +

∫ t

t0

R(t, s)g(s) ds, t ∈ I.

This ‘variation-of-constants’ formula is the key to establishing (global and
local) superconvergence results for collocation solutions to such equations.



As the above proof implicitly shows, an analogous representation can be
derived for the solution of the delay Volterra integral equation (2.1), since
by (D2) the delay τ = τ(t) in θ(t) = t− τ(t) does not vanish in I. Suppose,
for ease of notation and without loss of generality, that T in I = [t0, T ] is
such that ξM+1 = T (or, alternatively, T ∈ (ξM , ξM+1]) for some M ≥ 1.

Theorem 2.2. Let (D1)–(D3) and the assumptions of Theorem 2.1 hold,
and set

g0(t) := g(t) −
∫ t0

θ(t)
K2(t, s)φ(s) ds for t ∈ [t0, ξ1].

Then, for t ∈ I(µ) := [ξµ, ξµ+1] (µ ≥ 1), the unique (bounded) solution y of
(2.1) corresponding to the initial function φ can be expressed in the form

y(t) = g(t) +

∫ t

ξµ

R1(t, s)g(s) ds + Fµ(t) + Φµ(t), (2.8)

with

Fµ(t) :=

∫ ξ1

t0

Rµ,0(t, s)g0(s) ds +

µ−1
∑

ν=1

∫ ξν+1

ξν

Rµ,ν(t, s)g(s) ds,

Φµ(t) :=

∫ θµ(t)

t0

Qµ,0(t, s)g0(s) ds +

µ−1
∑

ν=1

∫ θµ−ν(t)

ξν

Qµ,ν(t, s)g(s) ds.

On the initial interval I(0) := (ξ0, ξ1] (with ξ0 = t0) the solution y is given by

y(t) = g0(t) +

∫ t

t0

R1(t, s)g0(s) ds. (2.9)

Here, R1 is the resolvent kernel associated with the given kernel K1 of the
Volterra integral operator (2.2), Rµ,ν and Qµ,ν denote functions which are
continuous on their respective domains and depend on K1, K2, R1 and θ,
and θk := θ ◦ · · · ◦ θ

︸ ︷︷ ︸

k

.

Remark. The structure of the above ‘variation-of-constants’ formula (2.8)
and (2.9) clearly reveals the interaction between the classical lag term Fµ(t)
(governed by the classical Volterra operator V) and the delay term Φµ(t)
(which reflects the action of the non-vanishing lag function θ in Vθ). The
structure of the latter will play a crucial role in the selection of appropriate
(‘θ-invariant’) meshes for which local superconvergence results are possible
(Sections 3.4.2 and 3.4.3).



Proof. The solution of the ‘local’ integral equation

y(t) = gµ(t) +

∫ t

ξµ

K1(t, s)y(s) ds, t ∈ I(µ),

is given by

y(t) = gµ(t) +

∫ t

ξµ

R1(t, s)gµ(s) ds, t ∈ I(µ), (2.10)

with R1(t, s) defined by the resolvent equation

R1(t, s) = K1(t, s) +

∫ t

s
R1(t, v)K1(v, s) dv, (t, s) ∈ D(µ),

where D(µ) := {(t, s) : ξµ ≤ s ≤ t ≤ ξµ+1}. The expression (2.9) for the

solution on the interval I(0) thus follows immediately.
On I(1) (µ = 1) we thus have, using Dirichlet’s formula,

g1(t) = g(t) +

∫ ξ1

t0

(

K1(t, s) +

∫ ξ1

s
K1(t, v)R1(v, s) dv

)

g0(s) ds

+

∫ θ(t)

t0

(

K2(t, s) +

∫ θ(t)

s
K2(t, v)R1(v, s) dv

)

g0(s) ds

=: g(t) +

∫ ξ1

t0

Q
(1)
1,1(t, s)g0(s) ds +

∫ θ(t)

t0

Q
(1)
1,0(t, s)g0(s) ds,

with obvious meaning of the (continuous) functions Q
(1)
1,0 and Q

(1)
1,1.

Recall now the representation (2.10) with µ = 1 of the solution y on I(1):
after trivial algebraic manipulation it can be written as

y(t) = g(t) +

∫ t

t0

R1(t, s)g(s) ds +

∫ ξ1

t0

(
Q

(1)
1,1(t, s) + Q̂

(1)
1,1(t, s)

)
g0(s) ds

+

∫ θ(t)

t0

(
Q

(1)
1,0(t, s) + Q̂

(1)
1,0(t, s)

)
g0(s) ds.

This yields (2.8) with µ = 1, by setting

R1,0(t, s) := Q
(1)
1,1(t, s) + Q̂

(1)
1,1(t, s), Q1,0(t, s) := Q

(1)
1,0(t, s) + Q̂

(1)
1,0(t, s).

Clearly, the functions describing this expression for y are continuous in the
region where they are defined.

The proof is now concluded by a simple but notationally tedious induction
argument. This argument reveals that, in the variation-of-constants formula
(2.8), the integrals over I(µ) = [ξµ, ξµ+1] with µ ≥ 1 will contribute terms
involving only g(t), while the integrals over [ξ0, ξ1] and [ξ0, θ

µ(t)] contain the



‘entire’ initial function g0(t) which includes the contribution of the initial
function φ.

The result of Theorem 2.2 and its proof lead to the following result on
the regularity of solutions of (2.1).

Theorem 2.3. Assume that (D1)–(D3) are satisfied, with d ≥ m ≥ 1 in
(D1), and that the functions describing the delay Volterra integral equation
(2.1) all possess continuous derivatives of at least order m ≥ 1 on their
respective domains. Then the following properties hold.

(a) The (unique) solution y of the initial-value problem for (2.1) is in
Cm(ξµ, ξµ+1] for each µ = 0, 1, . . . , M and is bounded on ZM := {ξµ :
µ = 0, 1, . . . , M}.

(b) At t = ξµ (µ = 1, . . . , min{m, M}) we have

lim
t→ξ−µ

y(µ−1)(t) = lim
t→ξ+

µ

y(µ−1)(t),

while the µth derivative of y is in general not continuous at ξµ. How-
ever, for t ∈ [ξm+1, T ] the solution lies in Cm[ξm+1, T ].

Remark. Differentiation of the Volterra delay integral equation of the
first kind,

∫ t

θ(t)
H(t, s)y(s) ds = f(t), t ∈ I, f(0) = 0, (2.11)

leads – under appropriate regularity assumptions for H and f (see Sec-
tion 2.2) – to a second-kind delay VIE that is somewhat more general than
(2.1), namely

y(t) = g(t) + b(t)y(θ(t)) + (Wθy)(t), t ∈ (θ(t0), t0], (2.12)

where we have set

g(t) :=
f ′(t)

K(t, t)
, b(t) :=

H(t, θ(t))θ′(t)

H(t, t)
,

and

K(t, s) := −∂H(t, s)/∂t

H(t, t)

in (2.12) and in the Volterra operator Wθ (cf. (2.5)). Since the delay τ
in θ(t) = t − τ(t) does not vanish on I, the above result on the exist-
ence and uniqueness of a solution of the corresponding initial-value problem
(Theorem 2.1), the variation-of-constants formula (Theorem 2.2), and the
regularity properties (Theorem 2.3) can be generalized to encompass (2.11).
We leave the proofs of these generalizations as an exercise. Note that for
kernels with ∂H(t, s)/∂t ≡ 0, equation (2.11) is closely related to (1.3).



2.2. First-kind Volterra integral equations with non-vanishing delays

For the sake of comparison we briefly consider the linear first-kind Volterra
integral equation with delay function θ satisfying (D1)–(D3),

(Vy)(t) + (Vθy)(t) = g(t), t ∈ (t0, T ], (2.13)

subject to the initial condition y(t) = φ(t), t ∈ [θ(t0), t0]. The (linear)
Volterra integral operators are those in (2.2) and (2.3).

Using the notation of the previous section we can write (2.13) in the local
form

∫ t

ξµ

K1(t, s)y(s) ds = gµ(t), t ∈ (ξµ, ξµ+1], (2.14)

with

gµ(t) := g(t) −
∫ ξµ

t0

K1(t, s)y(s) ds −
∫ θ(t)

t0

K2(t, s)y(s) ds, (2.15)

for µ ≥ 1. For t ∈ (ξ0, ξ1] this becomes

g0(t) := g(t) +

∫ t0

θ(t)
K2(t, s)φ(s) ds. (2.16)

This reveals that for arbitrary continuous K2, g, φ, θ, we have

g0(t0) = g(t0) +

∫ t0

θ(t0)
K2(t0, s)φ(s) ds �= 0.

Hence, according to the classical Volterra theory of 1896, it follows that
typically the solution of (2.13) (with µ = 0) will be unbounded at t = ξ+

0
= t+0 :

lim
t→t−0

y(t) = φ(t0) �= lim
t→t+0

y(t) = ±∞.

For the solution to be bounded at t = t+0 the initial function must be such
that

∫ t0

θ(t0)
K2(t0, s)φ(s) ds = −g(t0). (2.17)

We summarize these observations in the following theorem.

Theorem 2.4. Assume:

(a) K1 ∈ C1(D), with |K1(t, t)| ≥ κ0 > 0, t ∈ I := [t0, T ];

(b) K2 ∈ C1(Dθ);

(c) g ∈ C1(I);

(d) θ ∈ C1 is subject to (D1)–(D3) of Section 2.1, with d = 1 in (D1).



Then, for any φ ∈ C[θ(t0), t0], there exists a unique y with y ∈ C(ξµ, ξµ+1]
(µ = 0, 1, . . . , M) which solves (2.13) on (t0, T ] and coincides with φ on
[θ(t0), t0]. This solution y remains bounded at t = t0 = ξ0 if and only if
(2.17) holds.

Is the smoothing property we encountered in solutions of delay Volterra
integral equations of the second kind (Theorem 2.3) also present in solu-
tions of the first-kind delay equation (2.13)? The simple but representative
example

∫ t

t0

y(s) ds +

∫ θ(t)

t0

λ2y(s) ds = g(t), t ∈ (t0, T ], (2.18)

with y(t) = φ(t) = φ0 for t ∈ [θ(t0), t0], whose solution can easily be found
explicitly, shows that this is not so. The following theorem describes the
general situation.

Theorem 2.5. Let the assumptions of Theorem 2.4 for the given functions
in (2.13) hold, and assume that the initial function φ ∈ C[θ(t0), t0] is such
that the solution y of the initial-value problem for (2.13) is bounded at
t = t+0 (cf. (2.17)). If y possesses a finite discontinuity at t = t0, then it also
has finite jumps at the other points of ZM .

The extension of this regularity result to first-kind Volterra integral equa-
tions and to a class of related neutral functional integro-differential equa-
tions with weakly singular kernels will play an important role in the (not
yet fully understood) analysis of convergence of collocation methods for
such equations. See Brunner (1999a, 1999b) and the remarks in Section 6.3
below.

2.3. VIDEs with non-vanishing delays

We now turn to the (regularity) properties of solutions to the linear first-
order delay VIDE

y′(t) = a(t)y(t) + b(t)y(θ(t)) + g(t) + (Vy)(t) + (Vθy)(t), t ∈ I := [t0, T ],
(2.19)

corresponding to the Volterra integral operators V and Vθ introduced in
(2.2) and (2.3). It includes the analogue of the particular delay VIE (2.4),

y′(t) = a(t)y(t) + b(t)y(θ(t)) + g(t) + (Wθy)(t), t ∈ I, (2.20)

with Wθ given by (2.5) or (2.6).
The solutions y of the delay VIDE (2.19) (and hence those of (2.20)) will

in general again have lower regularity at the primary discontinuity points

{ξµ} defined by the recursion

θ(ξµ) = ξµ−1, µ = 1, . . . , (ξ0 = t0).



We start with a basic result on the existence and uniqueness of solutions
of the initial-value problem for (2.19).

Theorem 2.6. Assume:

(a) a, b, g, θ ∈ C(I), K1 ∈ C(D), K2 ∈ C(Dθ);

(b) θ(t) = t − τ(t) satisfies the conditions (D1)–(D3) of Section 2.1.

Then, for any initial function φ ∈ C[θ(t0), t0], there exists a unique function
y ∈ C(I)∩C1(t0, T ] which satisfies the delay VIDE (2.19) on I and coincides
with φ on [θ(t0), t0]. At t = t0 its derivative is, in general, discontinuous
(but bounded):

lim
t→t+0

y′(t) �= lim
t→t−0

y′(t) = φ′(t0)

(assuming that θ′(t0) exists).

The (unique) solution y of the initial-value problem for (2.19) can be
expressed by a variation-of-constants formula, analogous to the one in The-
orem 2.2 for the delay VIE (2.1). This result is based on the ‘local’ form of
the above delay VIDE, that is, on the initial-value problem with respect to
the interval I(µ) := [ξµ, ξµ+1] (µ = 1, . . . , M):

y′(t) = a(t)y(t) + gµ(t) +

∫ t

ξµ

K1(t, s)y(s) ds, t ∈ I(µ), (2.21)

where y(ξµ) is known and gu is defined by

gµ(t) := g(t) + b(t)y(θ(t)) +

∫ ξµ

t0

K1(t, s)y(s) ds

+

∫ θ(t)

t0

K2(t, s)y(s) ds. (2.22)

For µ = 0 the above lag term reduces to

g0(t) := g(t) + b(t)φ(θ(t)) −
∫ t0

θ(t)
K2(t, s)φ(s) ds, t ∈ I(0). (2.23)

The solution of the (local) VIDE (2.21) has the form

y(t) = r1(t, ξµ)y(ξµ) +

∫ t

ξµ

r1(t, s)gµ(s) ds, t ∈ I(µ), (2.24)

with the resolvent kernel r1 given by the solution of the resolvent equation

∂r1(t, s)

∂s
= −r1(t, s)a(s) −

∫ t

s
r1(t, v)K1(v, s) dv, (t, s) ∈ D(µ), (2.25)



subject to the initial condition r1(t, t) = 1 for t ∈ I(µ). (Compare also Gross-
man and Miller (1970), Brunner and van der Houwen (1986), or Brunner
(2004b) for the theory of classical linear VIDEs.)

The following variation-of-constants formula is the analogue of the one
presented in Theorem 2.2. Observe, however, that we now have additional
terms involving the values of y at the primary discontinuity points {ξµ}.
Theorem 2.7. Let the given functions a, b, g, K1, K2, φ be continuous,
and assume that θ is subject to (D1)–(D3). Then on the interval I(µ) :=
[ξµ, ξµ+1] (µ ≥ 1) the solution of the initial-value problem for (2.19) can be
written as

y(t) = r1(t, ξµ)y(ξµ) +

∫ t

ξµ

r1(t, s)g(s) ds + Fµ(t) + Φµ(t), (2.26)

with

Fµ(t) :=

µ−1
∑

ν=1

ρµ,ν(t)y(ξν) +

∫ ξ1

ξ0

rµ,0(t, s)g0(s) ds +

µ−1
∑

ν=1

∫ ξν+1

ξν

rµ,ν(t, s)g(s) ds,

Φµ(t) :=

∫ θµ(t)

ξ0

qµ,0(t, s)g0(s) ds +

µ−1
∑

ν=1

∫ θµ−ν(t)

ξν

qµ,ν(t, s)g(s) ds.

On the first interval I(0) this representation reduces to

y(t) = r1(t, t0)y(t0) +

∫ t

t0

r1(t, s)g0(s) ds, (2.27)

where y(t0) = φ(t0). The functions ρµ,ν , rµ,ν , and qµ,ν depend on a, b, K1,
K2, r1 and θ and are continuous on their respective domains; r1 = r1(t, s)
denotes the resolvent kernel for K1 = K1(t, s) defined by the resolvent
equation (2.25).

Proof. The basic idea governing the proof of the above result is essentially
the one used to establish Theorem 2.2, except that now the variation-of-
constants formula is based on the resolvent representation of the solution
of the ‘local’ VIDE (2.21) and will thus reflect the initial values y(ξµ). We
leave the details of this simple proof to the reader.

Remarks. (1) As in Theorem 2.2 we see again how the presence of the
delay term (Vθy)(t) in (2.19) influences the resolvent representation of the
classical (non-delay) VIDE on the macro-interval I(µ). In addition, we now
have terms reflecting the initial values y(ξν) (0 ≤ ν ≤ µ).

(2) There is a close connection between the representation of the solution of
certain classes of Volterra functional (integro-)differential equations and the
semigroup framework into which such equations can be embedded. Among
the many papers dealing with this framework and corresponding solution



representations we mention Burns et al. (1983c), Staffans (1985a, 1985b),
Kappel and Zhang (1986), Burns, Herdman and Turi (1987), Clément,
Desch and Homan (2002), and Ito and Kappel (2002).

2.4. Volterra functional equations with weakly singular kernels

As we have briefly seen in the remarks following equation (1.10), Volterra
functional integral and integro-differential equations with weakly singular
(i.e., unbounded but integrable) kernels occur in many applications. Owing
to limitations of space we shall not be able to say much about them in this
paper, except to comment on open problems in their collocation analysis
(Section 6.3). Here, we introduce relevant notation and point to papers in
which the reader will find additional information.

Assume that α ∈ (0, 1) is given, and define the delay integral operators

(Vθ,αy)(t) :=

∫ θ(t)

0
(t − s)−αK(t, s)y(s) ds, (2.28)

and

(Wθ,αy)(t) :=

∫ t

θ(t)
(t − s)−αK(t, s)y(s) ds, (2.29)

corresponding to continuous kernel functions K satisfying |K(t, t)| ≥ k0 > 0
when s = t. In Section 6.2 we will comment on some of the open problems
arising for the corresponding functional equations

y(t) = g(t) + (Tθ,αy)(t) (2.30)

and

y′(t) = f(t, y(t), y(θ(t))) + (Tθ,αy)(t), (2.31)

with Tθ,α representing one of the Volterra integral operators Vθ,α or Wθ,α.
In Section 1.2 (equation (1.10)) we have encountered a (system of a) func-

tional integro-differential equations of neutral type whose scalar counterpart
may be written as (now using our standard notation),

d

dt
(a0y(t) − (Wθ,αy)(t)) = F (t, y(t), y(θ(t)), y′(θ(t))), t ≥ 0,

with 0 < α < 1 and

(Wθ,αy)(t) :=

∫ t

θ(t)
(t − s)−αK(t, s)y(s) ds, θ(t) = t − τ.

A related (but more complex) Volterra functional integro-differential equa-
tion is

d

dt
((Wθ,αy)(t)) = f(t). (2.32)



The mathematical analysis of functional equations of this type may be found
in, e.g., Kappel and Zhang (1986), Ito and Kappel (1991), Clément et al.

(2002), and Ito and Kappel (2002). We will briefly return to these two
classes of functional equations in Section 6.3. The mathematical (semigroup)
framework for such equations has been developed in, e.g., the papers and
the monograph mentioned at the end of Section 2.3 (Remark (2)); results
on the regularity of their solutions may be found in Brunner and Ma (2004).

3. Collocation methods for VFIEs with non-vanishing delays

3.1. Numerical analysis of VFIEs: an overview

We will use this section to sketch briefly the development of numerical meth-
ods for solving delay differential equations and more general functional in-
tegral and integro-differential equations of Volterra type. In the subsequent
sections we shall then focus on collocation methods for such problems.

Most of the early discretization schemes for delay problems are based
on ‘classical’ linear multistep and Runge–Kutta methods for ODEs. These
methods have to be complemented by a suitable interpolation procedure
(e.g., by a natural continuous extension (NCE)), to generate approximations
at certain non-mesh points θ(t). One of the principal merits of a collocation
method is that the NCE is part of the method itself.

3.1.1. DDEs

The monograph by Myshkis (1972) (first published in Russian in 1955; see
also the German translation of 1955) stands at the beginning of a sequence
of distinguished monographs on the theory and applications of delay differ-
ential equations. Of these we mention Bellman and Cooke (1963), El’sgol’ts
and Norkin (1973), Hale (1977), Kolmanovskii and Myshkis (1992), Hale
and Verduyn Lunel (1993), Diekmann et al. (1995), Wu (1996) (on partial
DDEs), and Ito and Kappel (2002) (on more general functional equations).
The early survey papers by Halanay and Yorke (1971), Cryer (1972) and
Bellen (1985), when read in ‘hand-in-hand’ with the recent ones by Zennaro
(1995), Baker (1997, 2000), Baker and Paul (1997) and Bocharov and Rihan
(2000), give a good idea of how the interest in theory, numerical analysis,
and applications of DDE has grown since the early 1970s.

The monograph by Bellen and Zennaro (2003) provides not only a good
introduction, by means of numerous illuminating examples, to the theory of
DDEs but gives a state-of-the-art treatment of numerical methods for DDEs.
Focusing on Runge–Kutta-type methods, we see that, beginning in the early
1980s, one can discern two main trends in the analysis of such methods. The
first is concerned with the adaptation of (explicit and implicit) RK meth-
ods to DDEs and the construction of various interpolants, including NCEs.



Typical contributions are those by Bellen and Zennaro (1985), Zennaro
(1986), in ’t Hout (1992), and Vermiglio and Zennaro (1993) (Chapters 5
and 6 in Bellen and Zennaro (2003) contain a description of these quantit-
ative aspects). Computational aspects are discussed in detail in Bellen and
Zennaro (2003); compare also Neves and Thompson (1992) and Guglielmi
and Hairer (2001b).

The second aspect is the study of asymptotic stability and contractivity
properties of RK methods. Early milestones in the qualitative analysis of
such methods are the papers by Reverdy (1981, 1990) and Torelli (1989).
Of the many later contributions extending these results, the reader may also
wish to consult those by Zennaro (1993, 1997), Torelli and Vermiglio (2003)
Spijker (1997), Vermiglio and Torelli (1998), Guglielmi (1998) (dealing with
delay-dependent stability), Guglielmi and Hairer (2001a) and Maset (2003).
Finally, we mention the papers by Ascher and Petzold (1995) and Hauber
(1997) on related numerical aspects for differential-algebraic equations with
delays.

We shall see in Section 5.8 that the analogous analysis of the qualitative
behaviour of collocation solutions for Volterra-type functional integral and
integro-differential equations remains largely open.

Most of these papers consider only DDEs with constant delay τ > 0.
For general lag functions θ(t) = t − τ(t) with nonlinear delay τ(t), the
analysis and the implementation of IRK methods become much more com-
plex (compare Lemma 3.1 below). This problem is not present in piecewise
polynomial collocation methods since, as we have indicated before, they
are global methods and thus automatically include an NCE. Bellen (1984)
gave the first complete (super-) convergence analysis for such methods when
applied to nonlinear DDEs with general nonlinear (non-vanishing) delays;
his analysis is complemented in Vermiglio (1985). These collocation meth-
ods employ distinct collocation points; Hermite-type collocation for DDEs
(and the attainable order of convergence) was studied by Oberle and Pesch
(1981). More recent work on various aspects of collocation methods are
studied in Enright and Hayashi (1998), Liu (1999a, 1999b), Engelborghs,
Luzyanina, in ’t Hout and Roose (2000), Engelborghs and Doedel (2002),
and in Guglielmi and Hairer (2001a) (collocation at Radau II points).

We will not mention any of the superconvergence results here, since they
can be obtained as particular cases of those for Volterra integro-differential
equations with delays (see Section 3.1.3).

3.1.2. VFIEs of the second kind

As we saw in Section 1, the first papers on the theory of delay integral equa-
tions (Volterra (1897), Lalesco (1908, 1911), and Andreoli (1913, 1914))
considered the case of vanishing (proportional) delays. The development
of the early theory for Volterra equations with non-vanishing delays is well



sketched in Vogel (1965). Also of interest is the paper by Lin (1963), which
contains a comparison result for solutions of systems of second-kind Volterra
integral equations with constant delay. Additional results on the existence,
uniqueness, and representation of solutions to such functional equations can
be found in Levin and Nohel (1964), Bownds, Cushing and Schutte (1976),
Cerha (1976) and Mureşan (1984, 1999), as well as in Cooke (1976), Esser
(1976, 1978), Meis (1976), Busenberg and Cooke (1980), Cahlon, Nachman
and Schmidt (1984) and Cañada and Zertiti (1994) (also for additional ref-
erences). Chapter 4 in Brunner (2004b) contains an introduction to the
theory of VIEs and VIDEs with non-vanishing delays.

The numerical analysis of Volterra integral equations with delays can be
traced back to Esser (1976, 1978), Vâţă (1978), Wolff (1982), Cahlon et

al. (1984) and Cahlon and Nachman (1985). More recent contributions on
Runge–Kutta methods are those by Arndt and Baker (1988), Baker and
Derakhshan (1990), Vermiglio (1992), as well as those by Cahlon (1990,
1992, 1995), Cahlon and Schmidt (1997), and Tian and Kuang (1995) (on
the stability of numerical approximations). The reader may also wish to
look at the survey papers by Cryer (1972) and Baker (1997, 2000).

Collocation methods in piecewise polynomial spaces occur in Vermiglio
(1992), and their superconvergence properties are studied in detail in Brun-
ner (1994a), Baddour and Brunner (1993), Hu (1997, 1999), and Brunner
(2004b, Chapter 4).

3.1.3. VFIDEs

The literature on the theory and the numerical solution of VIDEs with
delays is more extensive. It starts of course with Volterra’s work (Volterra
(1909, 1912) and, especially, (1927), (1931)). Of the numerous books we
list the ones by Cushing (1977), Györi and Ladas (1991), Lakshmikantham,
Wen and Zhang (1994), Ito and Kappel (2002), and Zhao (2003); see also
the surveys by Corduneanu and Lakshmikantham (1980) and Jackiewicz
and Kwapisz (1991), and their bibliographies. The regularity of solutions is
analysed in, e.g., Willé and Baker (1992) and in Brunner and Zhang (1999).

Important early contributions to the numerical solution of VFIDEs are
due to Thompson (1968) and Tavernini (1971, 1973, 1978) (linear mul-
tistep and general one-step methods). We also mention the papers by Jack-
iewicz (1984), Arndt and Baker (1988), Jackiewicz and Kwapisz (1991),
Makroglou (1983) (block methods for VIDEs with constant delay), Kaza-
kova and Bainov (1990), Enright and Hu (1997) (continuous Runge–Kutta
methods), and Baker and Tang (1997, 2000). Most of these methods are
based on ODE schemes and hence they require an appropriate interpolation
scheme to produce ‘dense’ data. The construction of NCEs for RK methods
applied to classical VIDEs is the subject in Vermiglio (1988) (see also Bellen,
Jackiewicz, Vermiglio and Zennaro (1989) for the case of delay VIEs); it can



be extended to VIDEs with non-vanishing delays. Bellen (1985) and Baker
(1997, 2000) contain comprehensive surveys and extensive lists of references
on the numerical treatment of functional differential equations.

The numerical treatment of partial VIDEs with delay arguments have
received increased attention in recent years. This topic is beyond the scope
of this article (and the expertise of its author); the interested reader may
consult Zubik-Kowal (1999) and Zubik-Kowal and Vandewalle (1999) for
results and additional references.

Cryer and Tavernini (1972) study Euler’s method for very general Vol-
terra functional equations. This method may of course be interpreted as a
simple collocation method. The (super-) convergence properties of piecewise
polynomial collocation methods for delay VIDEs are described in Brun-
ner (1994b), Burgstaller (1993, 2000), and Hu and Peng (1999); see also
Chapter 4 in Brunner (2004b). The papers by Koto (2002) and by Brun-
ner and Vermiglio (2003) investigate stability and contractivity properties
of solutions to VIDEs with constant delays and neutral VFIDEs of ‘Hale’s
form’. However, much work remains to be done before a good understanding
of the qualitative (asymptotic) properties of collocation solutions to general
(nonlinear) VFIDEs is obtained.

Finally, we mention another, important approach to the numerical solu-
tion of VFIDEs: it is based on a semigroup framework generated by the
given functional equation (cf. also Clément et al. (2002) and references)
and is able to deal with a rather general class of (linear) neutral VFIDEs.
This approach originated in the work of Banks and Kappel (1979); see also
Ito and Kappel (1989, 1991), Ito and Turi (1991), Clément et al. (2002),
and, especially, the recent monograph by Ito and Kappel (2002).

3.2. Collocation methods for VFIEs with non-vanishing delays

In order to lead the reader not familiar with collocation methods for classical
Volterra integral and integro-differential equations to their application to
Volterra-type functional equations, we briefly summarize the principal ideas
and mathematical tools underlying these global discretization methods.

3.2.1. Collocation spaces for classical Volterra equations

Let Ih := {tn : 0 = t0 < t1 < · · · < tN = T} be a mesh on the interval
I := [0, T ], and set

σn := (tn, tn+1], σ̄n := [tn, tn+1], hn := tn+1 − tn (0 ≤ n ≤ N − 1);

the diameter of the mesh Ih is h := max(n) hn. For given integers m ≥ 1
and d ≥ −1 we let

S
(d)
m+d(Ih) := {uh ∈ Cd(I) : uh|σn ∈ πm+d (0 ≤ n ≤ N − 1)} (3.1)



denote the linear space of (real) piecewise polynomials with respect to the

mesh Ih whose degree does not exceed m+d. If d = −1 then uh ∈ S
(−1)
m−1(Ih)

will in general have finite (jump) discontinuities at the interior points of Ih;

the space of step functions, S
(−1)
0 (Ih), is the most obvious example of such

a discontinuous piecewise polynomial space.
The dimension of the linear space defined by (3.1) is given by

dim S
(d)
m+d(Ih) = Nm + (d + 1).

The choice of d, the degree of regularity, will be governed by the type of
functional equation whose solution will be approximated by collocation in

the linear space S
(d)
m+d(Ih): for the functional integral equations not contain-

ing derivatives of the unknown solution the ‘natural’ piecewise polynomial

space is S
(−1)
m−1(Ih) (d = −1), while for functional integro-differential equa-

tions in which the highest derivative of the unknown solution is y(k) (k ≥ 1)
we choose d = k − 1.

The desired collocation solution uh ∈ S
(d)
m+d(Ih) will be determined by re-

quiring that it satisfy the given functional equation on the set of collocation
points

Xh := {tn,i := tn + cihn : 0 < c1 < · · · < cm ≤ 1 (0 ≤ n ≤ N − 1)}, (3.2)

described by given collocation parameters {ci}. Clearly,

dim S
(d)
m+d(Ih) = Nm + (d + 1) = |Xh| + (d + 1).

If d ≥ 0 the collocation solution will also be required to coincide, at t = 0,
with the prescribed initial value(s); e.g., in the case of the DVIDEs (2.19)
and (2.20) (k = 1) we have uh(0) = y0.

3.2.2. Constrained and θ-invariant meshes

Assume that the given lag function θ(t) = t− τ(t) satisfies the assumptions
(D1)–(D3) of Section 2.1, which we will recall for the convenience of the
reader:

(D1) θ ∈ Cd(I) for some d ≥ 0, with I := [t0, T ];

(D2) τ(t) ≥ τ0 > 0 for t ∈ I;

(D3) θ is strictly increasing on I.

We have seen, in the comments preceding Theorem 2.1, that the primary
discontinuity points {ξµ}, induced by θ and given by θ(ξµ) = ξµ−1 (µ =
1, · · · ; ξ0 := t0), possess the (uniform) separation property ξµ − ξµ−1 ≥
τ0 > 0 for all µ ≥ 1. For ease of notation we will again assume that T
defining I = [t0, T ] is such that

T = ξM+1 for some M ≥ 1,



and we set ZM := {ξµ : µ = 0, 1, . . . , M}.
Since solutions of delay problems with non-vanishing delays generally suf-

fer from a loss of reguarity at the primary discontinuity points {ξµ}, the
mesh Ih underlying the collocation space will have to include these points
if the collocation solution is to attain its optimal global (or local) order (of
superconvergence. Thus, we shall employ meshes of the form

Ih :=

M⋃

µ=0

I
(µ)
h , I

(µ)
h := {t(µ)

n : ξµ = t
(µ)
0 < t

(µ)
1 < · · · < t

(µ)
Nµ

= ξµ+1}. (3.3)

Such a mesh is called a constrained mesh (with respect to θ) for I. We will

refer to Ih as the macro-mesh and call the I
(µ)
h the underlying local meshes.

Definition. A mesh Ih for I := [t0, T ] is said to be θ-invariant if it is
constrained (that is, given by (3.3)) and if

θ(I
(µ)
h ) = I

(µ−1)
h , µ = 1, . . . , M. (3.4)

We then have Nµ = N for all µ ≥ 0.

Observe that if Ih is θ-invariant then

t ∈ I
(µ)
h =⇒ θµ−ν(t) ∈ I

(ν)
h , ν = 0, 1, . . . , µ. (3.5)

In analogy to Section 3.2.1 we will use the following notation:

σ(µ)
n := (t(µ)

n , t
(µ)
n+1], h(µ)

n := t
(µ)
n+1−t(µ)

n , h(µ) := max
(n)

h(µ)
n , h := max

(µ)
h(µ),

and σ̄
(µ)
n := [t

(µ)
n , t

(µ)
n+1].

For a given θ-invariant mesh Ih the collocation solution uh will be an
element of a piecewise polynomial space

S
(d)
m+d(Ih) := {v ∈ Cd(Ih) : v|

σ
(µ)
n

∈ πm+d (0 ≤ n < N ; 0 ≤ µ ≤ M)}.
(3.6)

It follows from Section 3.2.1 that this linear space has the dimension

dimS
(d)
m+d(Ih) = (M + 1)Nm + d + 1.

Hence the collocation points will now be chosen as

Xh :=
M⋃

µ=0

X
(µ)
h ; (3.7)

they are based on the M + 1 local sets

X
(µ)
h := {t(µ)

n + cih
(µ)
n : 0 < c1 < · · · < cm ≤ 1 (0 ≤ n ≤ N − 1)}

of cardinality Nm. In the collocation equation for a given delay equation

with non-vanishing delay τ(t), we shall encounter the mapping θ(X
(µ)
h )



(see, for example, (3.9) below). It is clear that for linear lag functions θ and
given θ-invariant mesh Ih the set Xh defined by (3.7) is also θ-invariant.
However, for nonlinear delays this will no longer be true. We record this
important fact – which will affect the computational form of the collocation
equation – in the following lemma. Its proof is straightforward and is left
as an exercise.

Lemma 3.1. Assume that the delay function θ satisfies (D1)–(D3), and
let Ih be a θ-invariant mesh on I = [t0, T ].

(a) If θ is linear, then

θ(X
(µ)
h ) = X

(µ−1)
h , µ = 1, . . . , M,

and the set Xh of collocation points is also θ-invariant.

(b) For nonlinear θ this is no longer true: setting

θ(t(µ)
n + cih

(µ)
n ) = t(µ−1)

n + c̃ih
(µ−1)
n =: t̃

(µ−1)
n,i , i = 1, . . . , m,

the images {c̃i} of the {ci} satisfy

0 ≤ c̃1 < · · · < c̃m ≤ 1 (with c̃i �= ci in general),

and they depend on the micro-interval σ
(µ)
n and the macro-interval I(µ):

c̃i = c̃i(n; µ), i = 1, . . . , m.

3.3. Delay integral equations of the second kind

3.3.1. The collocation equations

The collocation solution uh ∈ S
(−1)
m−1(Ih) for the delay integral equation

y(t) = g(t) + (Vy)(t) + (Vθy)(t), t ∈ (t0, T ], (3.8)

with

(Vy)(t) :=

∫ t

t0

K1(t, s)y(s) ds, (Vθy)(t) :=

∫ θ(t)

t0

K2(t, s)y(s) ds,

and with initial condition y(t) = φ(t), t ≤ t0, is defined by the collocation
equation

uh(t) = g(t) + (Vuh)(t) + (Vθuh)(t), t ∈ Xh. (3.9)

The values of uh at t ∈ [θ(t0), t0] are determined by the given initial function
for (3.8), uh(t) = φ(t). As for classical second-kind Volterra integral equa-
tions we will also consider the iterated collocation solution corresponding
to uh:

uit
h(t) := g(t) + (Vuh)(t) + (Vθuh)(t), t ∈ (t0, T ]. (3.10)



The lag function θ = θ(t) = t−τ(t) will be assumed to satisfy the conditions
(D1)–(D3) of Section 3.2.2, and the mesh Ih on I := [t0, T ] will be assumed
to be the θ-invariant mesh defined by (3.3) and (3.4).

On σ
(µ)
n := (t

(µ)
n , t

(µ)
n+1] the collocation solution will have the usual local

Lagrange representation,

uh(t(µ)
n + vh(µ)

n ) =
m∑

j=1

Lj(v)U
(µ)
n,j , v ∈ (0, 1], with U

(µ)
n,j := uh(t

(µ)
n,j).

(3.11)
Since the contribution of the classical Volterra term Vuh to the computa-

tional form of the collocation equation is obvious, we will focus here on the

terms induced by the delay part (Vθuh)(t) with t = t
(µ)
n,i .

Assume first that the delay θ is linear . As we have seen in Lemma 3.1,
the θ-invariance of the mesh Ih implies the θ-invariance of the set Xh of

collocation points; thus we may write, using the fact that θ(t
(µ)
n,i ) = t

(µ−1)
n,i ,

(Vθuh)(t
(µ)
n,i ) =

∫ θ(t
(µ)
n,i )

t0

K2(t
(µ)
n,i , s)uh(s) ds (3.12)

=

∫ t
(µ−1)
n,i

t0

K2(t
(µ)
n,i , s)uh(s) ds,

and hence, recalling the local representation (3.11) of uh,

(Vθuh)(t
(µ)
n,i ) = Ψ(µ−1)

n (t
(µ)
n,i ) (3.13)

+ h(µ−1)
n

m∑

j=1

(∫ ci

0
K2(t

(µ)
n,i , t

(µ−1)
n + sh(µ−1)

n )Lj(s) ds

)

U
(µ−1)
n,j ,

with lag term

Ψ(µ−1)
n (t) :=

∫ ξµ−1

t0

K2(t, s)uh(s) ds (3.14)

+

∫ t
(µ−1)
n

ξµ−1

K2(t, s)uh(s) ds, t ∈ σ(µ)
n .

If the delay θ is nonlinear, then the above terms have to be modified:

by the (strict) monotonicity assumption (D3) for θ the image of t
(µ)
n,i ∈

σ
(µ)
n under θ lies in σ

(µ−1)
n (but will be different from the collocation point

t
(µ−1)
n,i = t

(µ−1)
n + cih

(µ−1)
n ); that is,

θ(t
(µ)
n,i ) = t(µ−1)

n + c̃ih
(µ−1)
n =: t̃

(µ−1)
n,i , i = 1, . . . , m, (3.15)



with

0 < c̃1 < · · · < c̃m ≤ 1 and c̃i = c̃i(n; µ)

(cf. Lemma 3.1). Accordingly, the expression (3.13) for (Vθuh)(t
(µ)
n,i ) now

reads

(Vθuh)(t
(µ)
n,i ) = Ψ(µ−1)

n (t
(µ)
n,i ) (3.16)

+ h(µ−1)
n

m∑

j=1

(∫ c̃i

0
K2(t

(µ)
n,i , t

(µ−1)
n + sh(µ−1)

n )Lj(s) ds

)

U
(µ−1)
n,j .

Hence, the collocation equation (3.9) at t = t
(µ)
n,i (i = 1, . . . , m) can now be

written as

U
(µ)
n,i = h(µ)

n

m∑

j=1

(∫ ci

0
K1(t

(µ)
n,i , t

(µ)
n + sh(µ)

n )Lj(s) ds

)

U
(µ)
n,j (3.17)

+ g(t
(µ)
n,i ) + F (µ)

n (t
(µ)
n,i ) + (Vθuh)(t

(µ)
n,i ).

The classical lag term (corresponding to the Volterra operator V in (3.9))

has, for t ∈ σ
(µ)
n , the form

F (µ)
n (t) :=

∫ ξµ

t0

K1(t, s)uh(s) ds +

∫ t
(µ)
n

ξµ

K1(t, s)uh(s) ds. (3.18)

Let U
(µ)
n := (U

(µ)
n,1 , . . . , U

(µ)
n,m)T ∈ R

m and define the matrices in L(Rm),

B(µ)
n :=

(∫ ci

0
K1(t

(µ)
n,i , t

(µ)
n + sh(µ)

n )Lj(s) ds

)m

i,j=1

,

B̃(µ−1)
n :=

(∫ c̃i

0
K2(t

(µ)
n,i , t

(µ−1)
n + sh(µ−1)

n )Lj(s) ds

)m

i,j=1

.

Finally, set

g(µ)
n := (g(t

(µ)
n,1), . . . , g(t(µ)

n,m))T ,

G(µ)
n := (F (t

(µ)
n,1), . . . , F

(µ)
n (t(µ)

n,m))T ,

and

Q(µ−1)
n := (Ψ(µ−1)

n (t
(µ)
n,1), . . . , Ψ

(µ−1)
n (t(µ)

n,m))T .

Thus, the collocation solution uh ∈ S
(−1)
m−1(Ih) to (3.8) on σ

(µ)
n is described

by (3.11), in which U
(µ)
n is the solution of the linear algebraic system

[Im − h(µ)
n B(µ)

n ]U(µ)
n = g(µ)

n + G(µ)
n + Q(µ−1)

n + h(µ−1)
n B̃(µ)

n U(µ−1)
n , (3.19)



where n = 0, 1, . . . , m and µ = 0, 1, . . . , M . The matrix Im denotes the
identity operator in L(Rm).

The following theorem on the existence of a unique collocation solution
is an obvious consequence of the uniform boundedness of the inverses of the

matrices B(µ)
n := Im − h

(µ)
n B

(µ)
n for sufficiently small mesh diameters h.

Theorem 3.2. Assume that g, θ, K1 and K2 are continuous on their re-
spective domains I, D and Dθ, with the lag function θ satisfying (D1)–(D3).

Then there exists an h̄ > 0 such that, for any θ-invariant mesh Ih with
h ∈ (0, h̄) and any initial function φ ∈ [θ(t0), t0], each of the linear algebraic

systems (3.19) possesses a unique solution U
(µ)
n ∈ R

m. Hence, the colloca-

tion equation (3.9) defines a unique collocation solution uh ∈ S
(−1)
m−1(Ih) for

(3.8) whose local representation on the subintervals σ
(µ)
n is given by (3.11).

The computational form of the iterated collocation solution (3.10) at t =

t
(µ)
n + vh

(µ)
n ∈ σ̄

(µ)
n can be written as

uit
h(t) = g(t) + F (µ)

n (t) + Ψ(µ−1)
n (t) (3.20)

+ h(µ)
n

m∑

j=1

(∫ v

0
K1(t, t

(µ)
n + sh(µ)

n )Lj(s) ds

)

U
(µ)
n,j

+ h(µ−1)
n

m∑

j=1

(∫ ṽ

0
K2(t, t

(µ−1)
n + sh(µ−1)

n )Lj(s) ds

)

U
(µ−1)
n,j .

Recall that the lag term Ψ
(µ−1)
n (t) corresponding to the delay operator Vθ

is given above by (3.14). The image t̃ := t
(µ−1)
n + ṽh

(µ−1)
n of t = t

(µ)
n + vh

(µ)
n

under θ depends on the nature of the lag function θ: if θ is linear then we
have ṽ = v; for nonlinear θ the value of ṽ ∈ [0, 1] must be obtained from

θ(t(µ)
n + vh(µ)

n ) =: t(µ−1)
n + ṽh(µ−1)

n , v ∈ (0, 1]. (3.21)

We note in passing that uit
h ∈ C[t0, T ] whenever the given data defining

the initial-value problem for (3.8) are continuous functions and we have

uit
h(t0) = g(t0) −

∫ t0

θ(t0)
K2(t0, s)φ(s)) ds (= y(t+0 )).

Moreover,

uit
h(t) = uh(t) for all t ∈ Xh.

Since second-kind Volterra integral equations with non-vanishing delays
often arise in the particular form

y(t) = g(t) + (Wθy)(t), t ∈ (t0, T ], (3.22)



where

(Wθy)(t) :=

∫ t

θ(t)
K(t, s)y(s) ds,

we present the corresponding computational form of the collocation equa-

tion defining uh ∈ S
(−1)
m−1(Ih) in some detail (although it could of course be

formally obtained by setting K2 = −K1 =: −K in (3.17). We first note

that for t = t
(µ)
n,i we have

(Wθuh)(t) =

∫ t
(µ−1)
n+1

θ(t)
K(t, s)uh(s) ds (3.23)

+

∫ ξµ

t
(µ−1)
n+1

K(t, s)uh(s) ds +

∫ t
(µ)
n

ξµ

K(t, s)uh(s) ds

+ h(µ)
n

∫ ci

0
K(t, t(µ)

n + sh(µ)
n )uh(t(µ)

n + sh(µ)
n ) ds,

where

θ(t) = θ(t
(µ)
n,i ) =







t
(µ−1)
n,i = t

(µ−1)
n + cih

(µ−1)
n , if θ is linear,

t̃
(µ−1)
n,i := t

(µ−1)
n + c̃ih

(µ−1)
n , if θ is nonlinear.

Define, for t = t
(µ)
n + cih

(µ)
n ,

Ψ̄(µ−1)
n (t) := h(µ−1)

n

∫ 1

c̃i

K(t, t(µ−1)
n + sh(µ−1)

n )uh(t(µ−1)
n + sh(µ−1)

n ) ds

+

∫ ξµ

t
(µ−1)
n+1

K(t, s)uh(s) ds +

∫ t
(µ)
n

ξµ

K(t, s)uh(s) ds. (3.24)

The collocation equation for (3.22) on σ
(µ)
n then becomes

U
(µ)
n,i = g(t

(µ)
n,i ) + Ψ̄(µ−1)

n (t
(µ)
n,i ) (3.25)

+ h(µ)
n

m∑

j=1

(∫ ci

0
K(t

(µ)
n,i , t

(µ)
n + sh(µ)

n )Lj(s) ds

)

U
(µ)
n,j , i = 1, . . . , m.

Hence, the resulting linear algebraic system for U
(µ)
n ∈ R

m defining the local

representation of uh on σ
(µ)
n (cf. (3.11)) has the form

[Im − h(µ)
n B(µ)

n ]U(µ)
n = g(µ)

n + Ḡ(µ−1)
n , (3.26)

with

g(µ)
n := (g(t

(µ)
n,1, . . . , g(t(µ)

n,m)T



and

Ḡ(µ−1)
n := (Ψ̄(µ−1)

n (t
(µ)
n,1), . . . , Ψ̄

(µ−1)
n (t(µ)

n,m))T .

The corresponding iterated collocation solution at t = t
(µ)
n + vh

(µ)
n ∈ σ̄

(µ)
n

can then be computed via

uit
h(t) = g(t) + Ψ̄(µ−1)

n (t) (3.27)

+ h(µ)
n

m∑

j=1

(∫ ci

0
K(t, t(µ)

n + sh(µ)
n )Lj(s) ds

)

U
(µ)
n,j .

3.3.2. Global convergence results

The collocation error eh := y − uh associated with the collocation solution

uh ∈ S
(−1)
m−1(Ih) for the delay integral equation (3.8) solves the initial-value

problem

eh(t) = δh(t) + (Veh)(t) + (Vθeh)(t), t ∈ (t0, T ], (3.28)

with initial condition eh(t) = 0 for t ∈ [θ(t0), t0]. The defect δh, defined by

δh(t) := −uh(t) + g(t) + (Vuh)(t) + (Vθuh)(t), t ∈ I,

vanishes on the set Xh. For t ∈ σ
(µ)
n (µ ≥ 1) the above error equation can

be written as

eh(t) = Eµ(t) + δh(t) +

∫ t

ξµ

K1(t, s)eh(s) ds, (3.29)

where

Eµ(t) :=

µ−1
∑

ν=0

∫ ξν+1

ξν

K1(t, s)eh(s) ds + (Vθeh)(t). (3.30)

On the first macro-interval (t0, ξ1] we have

E0(t) := (Vθeh)(t) = −
∫ t0

θ(t)
K2(t, s)eh(s) ds = 0.

If the given functions in (3.8) have continuous derivatives of at least order
m on their respective domains, the global convergence and order analysis can
be based on the (local) representation of the collocation error based on the
Peano Kernel Theorem for polynomial interpolation. This representation
has the form

eh(t(µ)
n + vh(µ)

n ) =
m∑

j=1

Lj(v)E(µ)
n,j + (h(µ)

n )mR(µ)
m,n(v), v ∈ (0, 1], (3.31)

with E(µ)
n,j := eh(t

(µ)
n,j) and Peano remainder term R

(µ)
m,n(v) (see Brunner

(2004b, Chapters 1 and 2) for details). On the first macro-interval [ξ0, ξ1]



the estimate for eh is the one for classical Volterra integral equations of the
second kind (Brunner and van der Houwen 1986, Chapter 5):

‖eh‖0,∞ := sup
t∈I(0)

|eh(t)| ≤ C0(h
(0))m, n = 0, 1, . . . , N − 1;

it is a consequence of the estimate ‖E(0)
n ‖1 = O((h(0))m) (where E

(µ)
n :=

(E(µ)
n,1 , . . . , E(µ)

n,m)T ). A simple induction argument, employing the estimates

for the terms Eµ(t) (t ∈ I(µ)) in (3.29) and (3.30), together with the obser-
vation that by the conditions (D1)–(D3) for the delay θ the number (M +1)
of macro-intervals I(µ) := [ξµ, ξµ+1] is finite, yields the results summarized
in the following theorem.

Theorem 3.3. Let the following conditions be satisfied.

(a) The given functions g, K1, K2 and φ in (3.8) all possess continuous
derivatives of order m on their respective domains.

(b) The delay function θ(t) = t − τ(t) is subject to the conditions (D1)–
(D3) of Section 3.2.2, with d ≥ m in (D1).

(c) uh ∈ S
(−1)
m−1(Ih) is the collocation solution to (4.8) corresponding to a

θ-invariant mesh Ih with h ∈ (0, h̄, where h̄ is defined in Theorem 3.2.

Then, for any set of collocation parameters {ci : 0 ≤ c1 < · · · < cm ≤ 1},
the collocation error admits the estimate

‖y − uh‖∞ := sup
t∈(t0,T ]

|eh(t)| ≤ Chm. (3.32)

The constant C depends on the {ci} but not on h := max(n,µ) h
(µ)
n .

Although it follows from (3.28) and Theorem 3.3 that, in general, ‖δh‖∞ =
O(hm) only, a judicious choice of the collocation parameters {ci} leads (not
too surprisingly, if we look at the close connection between the degree of
precision of interpolatory m-point quadrature formulas based on these ab-
scissas and the variation-of-constants formula of Theorem 2.2 adapted to the
error equation!) to global superconvergence on I for the iterated collocation

solution uit
h .

Theorem 3.4. Suppose that the assumptions (a)–(c) of Theorem 3.3 hold,
but with m + 1 replacing m in (a) and (b). If the collocation parameters
{ci} are chosen so that the orthogonality condition

J0 :=

∫ 1

0

m∏

i=1

(s − ci) ds = 0 (3.33)



is satisfied, then the iterated collocation solution corresponding to the

collocation solution uh ∈ S
(−1)
m−1(Ih) for (3.8) is globally superconvergent

on Ih:

‖y − uit
h‖∞ ≤ Chm+1,

with C depending on the {ci} but not on h.

Proof. The key to the proof of Theorem 3.4 (and Theorem 3.6 below) on
global superconvergence is the variation-of-constants formula (or ‘resolvent
representation’) for eh, together with the general global convergence result
of Theorem 3.3 and the observation that

eit
h(t) := y(t) − uit

h(t) = eh(t) − δh(t), t ∈ I.

For t = t
(µ)
n + vh

(µ)
n ∈ σ̄

(µ)
n Theorem 2.2 yields, with eh and δh replacing y,

g and g0 = g, respectively,

eit
h (t) =

∫ t

ξµ

R1(t, s)δh(s) ds +

µ−1
∑

ν=0

∫ ξν+1

ξν

Rµ,ν(t, s)δh(s) ds (3.34)

+

µ−1
∑

ν=0

∫ θµ−ν(t)

ξν

Qµ,ν(t, s)δh(s) ds.

The integrals, having as lower and upper limits points of the (θ-invariant)
mesh Ih, can be written as sums of integrals over individual micro-intervals
σ̄n, and each of these integrals can then be replaced by the sum of an inter-
polatory m-point quadrature formula with respect to the collocation points
in that interval and the corresponding quadrature error. The expression
given by the quadrature formula has value zero, since δh(t) = 0 for t ∈ Xh.
Owing to the assumed regularity of the data (which is inherited on D by the
resolvent R1 and, piecewise on D, by the functions Rµ,ν , Qµ,ν), the ortho-
gonality condition (3.33) implies that all quadrature errors are O(hm+1).
Here, we have used the result that, by definition, the defect δh and its

derivatives δ
(ν)
h (ν ≤ m + 1), are uniformly bounded on each interval I(µ).

It remains to deal with the integrals

∫ t

t
(µ)
n

R1(t, s)δh(s) ds and

∫ θµ−ν(t)

t
(ν)
n

Qµ,ν(t, s)δh(s) ds

(recall from (3.5) that θµ−ν(t) ∈ σ
(ν)
n if t ∈ σ

(µ)
n ). As we have observed

before, the defect δh induced by the collocation solution satisfies ‖δh‖∞ =
O(hm). Thus, in the estimation of the above integrals (via the usual scal-
ing) the uniform estimate for δh is multiplied by h, leading to the required
O(hm+1)-term in Theorem 3.4.



Corollary 3.5. In the particular delay integral equation (3.22) assume
that g ∈ Cm+1(I) and K ∈ Cm+1(D̄θ), with D̄θ := {(t, s) : θ(t) ≤ s ≤
t, t ∈ I}. Then the iterated collocation solution based on uh ∈ S

(−1)
m−1(Ih)

and defined by (3.27) has the global superconvergence property

‖y − uit
h‖∞ ≤ Chm+1

provided the mesh Ih is θ-invariant, the {ci} underlying the set Xh of col-
location points satisfy J0 = 0 (cf. (3.33)), and φ ∈ Cm+1[θ(t0), t0].

3.3.3. Local superconvergence results

The proof of the global superconvergence result in Theorem 3.4 indicates
that we can readily refine it so as to establish stronger local superconver-

gence properties for uh and uit
h at the mesh points t = t

(µ)
n .

Theorem 3.6. Let the given functions g, K1, K2 and φ in the delay in-
tegral equation (3.8) have continuous derivatives of order m + κ in their
respective domains I, D, Dθ and [θ(t0), t0], and assume that the delay func-
tion θ is subject to the conditions (D1)–(D3) of Section 3.2.2, with d ≥ m+κ

in (D1). If uh ∈ S
(−1)
m−1(Ih) denotes the collocation solution for a θ-invariant

mesh Ih, with corresponding iterated collocation solution uit
h , and if the

collocation parameters satisfy the orthogonality conditions

Jν :=

∫ 1

0
sν

m∏

i=1

(s − ci) ds = 0, 0 ≤ ν ≤ κ − 1,

with Jκ �= 0, then

max
t∈Ih\{t0}

|y(t) − uit
h | ≤ Chm+κ, for h ∈ (0, ĥ).

If, in addition, we have cm = 1 (implying κ < m), then uh itself exhibits
local superconvergence at the mesh points, that is,

max
t∈Ih\{t0}

|y(t) − uh(t)| ≤ Chm+κ.

Proof. Our starting point is (3.34) in the proof of Theorem 3.4 where we

now set t = t
(µ)
n . Hence,

eit
h(t(µ)

n ) =

∫ t
(µ)
n

ξµ

R1(t
(µ)
n , s)δh(s) ds +

µ−1
∑

ν=0

∫ ξµ+1

ξν

Rµ,ν(t
(µ)
n , s)δh(s) ds

+

µ−1
∑

ν=0

∫ θµ−ν(t
(µ)
n

ξν

Qµ,ν(t
(µ)
n , s)δh(s) ds,

where 0 ≤ n < N , 0 ≤ µ ≤ M , with θµ−ν(t
(µ)
n = t

(ν)
n (cf. (3.5)). Hence, the



familiar quadrature argument is applicable: since the defect δh vanishes on
Xh (and possesses uniformly bounded derivatives of order m = κ on each
I(µ)), and since the orthogonality and regularity conditions imply that the
quadrature errors induced by the interpolatory m-point quadrature formulas
based on the {ci} are all of order O(hm+κ), with the number M + 1 of
macro-intervals I(µ) being finite, the first assertion in Theorem 4.6 follows
immediately.

The second assertion is based on the fact that when cm = 1, each mesh

point t
(µ)
n (1 ≤ n ≤ N) is a collocation point and thus uit

h(t
(µ)
n ) = uh(t

(µ)
n ),

since δh(t
(µ)
n ) = 0. Note also that eit

h(t0) = 0 because uit
h(t0) = y(t+0 ).

Corollary 3.7. Assume κ = m in Theorem 3.6. Then collocation in

S
(−1)
m−1(Ih) at the Gauss points leads to an iterated collocation solution with

the property that

max
t∈Ih\{t0}

|y(t) − uit
h(t)| ≤ Ch2m,

while

max
t∈Ih\{t0}

|y(t) − uh(t)| ≤ Chm only.

Corollary 3.8. Suppose that κ = m − 1 and cm = 1. The optimal order

of convergence of the collocation solution uh ∈ S
(−1)
m−1(Ih) corresponding to

the Radau II points is then given by

max
t∈Ih\{t0}

|y(t) − uh(t)| ≤ Ch2m−1.

Recall that we have uit
h(t) = uh(t) for t ∈ Ih\{t0} whenever cm = 1 (i.e.,

when tn ∈ Xh, n = 1, . . . , N).
We illustrate these results by an example; it is also introduced, in view of

Sections 4 and 5, to remind the reader that the nature of a given delay τ(t)
(non-vanishing versus vanishing) is often governed by location of the initial
point t0 in I = [t0, T ].

Example 3.1. (Non-vanishing proportional delay) On I = [t0, T ]
with t0 > 0, the delay function θ(t) = qt(0 < q < 1) corresponds to a
non-vanishing delay τ(t) since

θ(t) = qt = t − (1 − q)t =: t − τ(t),

with τ(t) ≥ (1− q)t0 > 0 for t ∈ I. Hence, the primary discontinuity points
{ξµ} are given by

ξµ = q−µt0, µ ≥ 0.



We will assume, for ease of exposition and without loss of generality, that
T is such that ξM+1 = T for some M > 1. Hence, we may write

ξµ = qM+1−µT, µ = 0, 1, . . . , M + 1.

Suppose that the mesh Ih is constrained, and let each local mesh I
(µ)
h be

uniform:

I
(µ)
h := {t(µ)

n := ξµ + nh(µ) : n = 0, 1, . . . , N (h(µ) = q−(µ+1)(1 − q)t0/N)}.
A mesh of this type is often called a quasi-geometric mesh (see also Liu
(1995a), Bellen, Guglielmi and Torelli (1997), Bellen (2001), Bellen, Brun-
ner, Maset and Torelli (2002), and Guglielmi and Zennaro (2003). The
linearity of θ then implies that Ih is θ-invariant, and the same is true for
the set Xh of collocation points.

This choice of the local meshes defining Ih implies that

h = h(M) =
1

N
(ξM+1 − ξM ) = (1 − q)

T

N
,

and

h(µ) =
1

N
(ξµ+1 − ξµ) = qM+1−µ−1(1 − q)

T

N
, µ = 0, 1, . . . , M.

The result of, e.g., Theorem 3.6 then becomes

max
t∈Ih\{t0}

|y(t) − uit
h(t)| ≤ C(q)N−(m+κ).

Note that this result also holds for the delay VIE (3.22) on intervals I =
[t0, T ] with t0 > 0.

3.3.4. Nonlinear delay VIEs

Since the extension of the convergence analysis presented in the previous
sections to the general nonlinear version of (3.8),

y(t) = g(t) + (Vy)(t) + (Vθy)(t), t ∈ (t0, T ], (3.35)

is rather straightforward, we will omit it and instead focus on a class of
nonlinear delay VIEs occurring frequently in applications. These functional
equations have the form

y(t) = g(t) + (Wθy)(t), t ∈ (t0, T ], (3.36)

where the (nonlinear) Volterra operator Wθ is of Hammerstein type:

(Wθy)(t) :=

∫ t

θ(t)
k(t − s)G(s, y(s)) ds. (3.37)

There are two ways to generate collocation approximations to solutions of
Volterra–Hammerstein integral equations of the second kind. In the ‘direct’



approach discussed above we approximate y by uh ∈ S
(−1)
m−1(Ih), followed by

the iterated collocation solution uit
h based on uh. Alternatively, we can resort

to what is called implicitly linear collocation. Setting z(t) := (N y)(t) :=
G(t, y(t)), where N is the Niemytzki operator (or substitution operator), the
nonlinear delay VIE (3.36) becomes an implicitly linear delay VIE for z,

z(t) = G

(

t, g(t) +

∫ t

θ(t)
k(t − s)z(s) ds

)

, t ∈ (t0, T ], (3.38)

with initial condition z(t) = G(t, φ(t)), t ∈ [θ(t0), t0]. The solution of the
original DVIE is then obtained via the recursion

y(t) = g(t) + (Lθz)(t), t ∈ (t0, T ], (3.39)

where Lθ denotes the linear delay Volterra operator

(Lθy)(t) :=

∫ t

θ(t)
k(t − s)z(s) ds.

We note in passing that the survey paper by Brezis and Browder (1975) and
the monograph by Krasnosel’skii and Zabreiko (1984) contain many results
relevant in the analysis of solvability of Hammerstein integral equations and
operator equations (e.g., (3.38)) involving the Niemytzki operator. Compare
also Kumar and Sloan (1987) and Brunner (1992) for details and additional
references.

The solution z of (3.38) will be approximated by zh ∈ S
(−1)
m−1(Ih), using

the same collocation points Xh as in the direct approach: it is defined by
the implicit linear collocation equation

zh(t) = G

(

t, g(t) +

∫ t

θ(t)
k(t − s)zh(s)) ds

)

, t ∈ Xh, (3.40)

with initial values zh(t) = G(t, φ(t)), t ∈ [θ(t0), t0]. This leads to the
approximation yh for the solution y of the orginal DVIE,

yh(t) := g(t) + (Lθzh)(t), t ∈ [t0, T ]. (3.41)

Setting

zh(t(µ)
n +vh(µ)

n ) =
m∑

j=1

Lj(v)Z
(µ)
n,j , v ∈ (0, 1], with Z

(µ)
n,i := zh(t

(µ)
n,j , (3.42)

the computational forms of these equations at t = t
(µ)
n,i and at t = t

(µ)
n +vh

(µ)
n ,



respectively, are

Z
(µ)
n,i = G

(

t
(µ)
n,i , g(t

(µ)
n,i ) + Ψ̄(µ−1)

n (t
(µ)
n,i ) (3.43)

+ h(µ)
n

m∑

j=1

(∫ ci

0
k((ci − s)h(µ)

n )Lj(s) ds

)

Z
(µ)
n,j

)

(i = 1, . . . , m), where for t = t
(µ)
n + vh

(µ)
n ∈ σ̄

(µ)
n we have

Ψ̄(µ−1)
n (t) := h(µ−1)

n

∫ 1

ṽ
k(t − t(µ−1)

n − sh(µ−1)
n )zh(t(µ−1)

n + sh(µ−1)
n ) ds

[2pt] +

∫ ξµ

t
(µ−1)
n+1

k(t − s)zh(s) ds +

∫ t
(µ)
n

ξµ

k(t − s)zh(s) ds,

and

yh(t) = g(t) + Ψ̄(µ−1)
n (t) (3.44)

+ h(µ)
n

m∑

j=1

(∫ v

0
k((v − s)h(µ)

n )Lj(s) ds

)

Z
(µ)
n,j , v ∈ [0, 1].

Recall that the number ṽ ∈ [0, 1] is obtained from

θ(t(µ)
n + vh(µ)

n ) =: t(µ−1)
n + ṽh(µ−1)

n , v ∈ [0, 1],

with ṽ = v if the delay function θ is linear.
The merits of this indirect collocation approach are twofold. Since in

many applications the convolution kernel k(t− s) is given by an elementary
function like exp(γ(t − s)) or (t − s)−α (α < 1), the integrals in (3.43) and
(3.44) can be found analytically. Perhaps more importantly, the ‘decoupling’
of the nonlinear G and z in (3.38) implies that during the iteration process
for solving the nonlinear algebraic systems (3.43) we do not have to re-
compute the integrals in each iteration step, in contrast to direct collocation
for (3.36).

3.4. Collocation for VIDEs with delay arguments

3.4.1. The collocation equations

The description and analysis of piecewise polynomial collocation solutions
for delay integral equations have provided all the essential ideas required to
deal with collocation solutions for the initial-value problem for delay VIDEs,

y′(t) = f(t, y(t), y(θ(t))) + (Vy)(t) + (Vθy)(t), t ∈ I := [t0, T ],

y(t) = φ(t), t ∈ [θ(t0), t0], (3.45)

with Volterra integral operators V and Vθ as in (3.8). The lag function θ



will again be assumed to satisfy conditions (D1)–(D3) of Section 3.2.2. We
will usually employ its linear counterpart, corresponding to

f(t, y, z) = a(t)y + b(t)z + g(t), (3.46)

to illustrate the essential ideas of the analysis.

The natural collocation space is now S
(0)
m (Ih), and hence the collocation

equation defining uh with respect of the θ-invariant mesh Ih is

uh(t) = f(t, uh(t), uh(θ(t))) + (Vuh(t) + (Vθuh)(t), t ∈ Xh, (3.47)

with uh(t) := φ(t) if t ≤ t0. For t ∈ σ
(µ)
n we define the lag term approxima-

tions

F (µ)
n (t) :=

∫ ξµ

t0

K1(t, s)uh(s) ds +

∫ t
(µ)
n

ξµ

K1(t, s)uh(s) ds, (3.48)

and

(Vθuh)(t) = Ψ(µ−1)
n (t) +

∫ θ(t)

t
(µ−1)
n

K2(t, s)uh(s) ds. (3.49)

In analogy to (3.14) we have

Ψ(µ−1)
n (t) =

∫ ξµ−1

t0

K2(t, s)uh(s) ds +

∫ t
(µ−1)
n

ξµ−1

K2(t, s)uh(s) ds.

With the local Lagrange representation of uh on σ̄
(µ)
n ,

uh(t(µ)
n + sh(µ)

n ) = y(µ)
n + h(µ)

n

m∑

j=1

βj(v)Y
(µ)
n,j , (3.50)

v ∈ [0, 1], with Y
(µ)
n,j := u′

h(t(µ)
n ),

the computational form of (3.36) becomes

Y
(µ)
n,i = f(t

(µ)
n,i , y

(µ)
n + h(µ)

n

m∑

j=1

ai,jY
(µ)
n,j , uh(θ(t

(µ)
n,i ))) (3.51)

+ h(µ)
n

∫ ci

0
K1(t

(µ)
n,i , t

(µ)
n + sh(µ)

n )

(

y(µ)
n + h(µ)

n

m∑

j=1

βj(s)Y
(µ)
n,j

)

ds

+ F (µ)
n (t

(µ)
n,i ) + (Vθuh)(t

(µ)
n,i ), i = 1, . . . , m

(which is reminiscent of the natural interpolant for an m-stage continuous
implicit Runge–Kutta method for a DDE on a constrained mesh; see Bellen



and Zennaro (2003, Chapter 6)). Recall from Lemma 3.1 that

θ(t
(µ)
n,i ) = t(µ−1)

n + c̃ih
(µ−1)
n ,

which coincides with the collocation point t
(µ−1)
n,i (i = 1, . . . , m) only if θ

is linear.
On the subinterval σ̄

(µ)
n the collocation solution uh ∈ S

(0)
m (Ih) is defined

by the local representation (3.50). Hence, the solution Y
(µ)
n ∈ R

m of the
linear algebraic system

[Im − h(µ)
n (A(µ)

n + h(µ)
n C(µ)

n )]Y(µ)
n = g(µ)

n + G(µ)
n + κ

(µ)
n y(µ)

n (3.52)

+ Q(µ−1)
n + κ̃

(µ−1)
n y(µ−1)

n + (h(µ−1)
n )2C̃(µ−1)

n Y(µ−1)
n ,

for n = 0, 1, . . . , N − 1, µ = 0, 1, . . . , M . The matrices in L(Rm) defining
the left-hand side of (3.52) are

A(µ)
n := diag(a(t

(µ)
n,i ))A, with A := (ai,j);

Ã(µ)
n := diag(b(t

(µ)
n,i ))Ã, with Ã := (βj(c̃i);

C(µ)
n :=

(∫ ci

0
K1(t

(µ)
n,i , t

(µ)
n + sh(µ)

n )βj(s) ds

)m

i,j=1

C̃(µ−1)
n :=

(∫ c̃i

0
K2(t

(µ)
n,i , t

(µ−1)
n + sh(µ−1)

n )βj(s) ds

)m

i,j=1

,

and we have set

κ
(µ)
n := a(µ)

n + h(µ)
n

(∫ ci

0
K1(t

(µ)
n,i , t

(µ)
n + sh(µ)

n ) ds

)m

i=1

,

κ̃
(µ−1)
n := b(µ)

n + h(µ−1)
n

(∫ c̃i

0
K2(t

(µ)
n,i , t

(µ−1)
n + sh(µ−1)

n ) ds

)m

i=1

,

with

a(µ)
n :=

(
a(t

(µ)
n,i )

)m

i=1
, b(µ)

n :=
(
b(t

(µ)
n,i )

)m

i=1
.

The vectors G
(µ)
n and Q

(µ−1)
n are defined by

G(µ)
n :=

(
F (µ)

n (t
(µ)
n,1), . . . , F

(µ)
n (t(µ)

n,m)
)T

,

Q(µ−1)
n :=

(
Ψ(µ−1)

n (t
(µ)
n,1), . . . , Ψ

(µ−1)
n (t(µ)

n,m)
)T

;



for t ∈ σ̄
(µ)
n their components are given by

F (µ)
n (t) :=

∫ ξµ

t0

K1(t, s)uh(s) ds +

∫ t
(µ)
n

ξµ

K1(t, s)uh(s) ds,

Ψ(µ−1)
n (t) :=

∫ ξµ−1

t0

K2(t, s)uh(s) ds +

∫ t
(µ−1)
n

ξµ−1

K2(t, s)uh(s) ds,

respectively (cf. (3.18) and (3.14)).

Theorem 3.9. Assume that the given functions a, b, g, K1, K2 describing
the linear delay VIDE (3.45), (3.46) are continuous on their respective do-
mains, and let the delay functions θ be subject to the hypotheses (D1)–(D3)
in Section 3.2.2. Then there exists a h̄ > 0 so that for any θ-invariant mesh
Ih with h ∈ (0, h̄) and any initial function φ ∈ C[θ(t0), t0] each of the linear

algebraic systems (3.52) possesses a unique solution Y
(µ)
n ∈ R

m. There-
fore, the collocation equation (3.47) defines a unique collocation solution

uh ∈ S
(0)
m (Ih) whose local representation on σ̄

(µ)
n is given by (3.50).

3.4.2. Global convergence results

The collocation error eh := y − uh associated with the collocation solution

uh ∈ S
(0)
m (Ih) to the linear DVIDE (3.45), (3.46) solves the initial-value

problem

e′h(t) = a(t)eh(t) + b(t)eh(θ(t)) + δh(t) + (Veh)(t) + (Vθeh)(t), t ∈ I,

eh(t) = 0, t ∈ [θ(t0), t0], (3.53)

where the defect δh vanishes on Xh, the set of collocation points. For t ∈
I(µ) := [ξµ, ξµ+1] we write the above error equation in the form

e′h(t) = a(t)eh(t) + δh(t) + Gµ(t) +

∫ t

ξµ

K1(t, s)eh(s) ds, t ∈ I(µ), (3.54)

with given initial value eh(ξµ) and lag term

Gµ(t) := b(t)eh(θ(t)) +

∫ ξµ

t0

K1(t, s)eh(s) ds + (Vθeh)(t).

When µ = 0 we have

e′h(t) = a(t)eh(t) + δh(t) +

∫ t

t0

K1(t, s)eh(s) ds, t ∈ I(0), (3.55)

since the initial condition eh(t) = 0, t ≤ 0 implies G0(t) = 0 in [θ(t0), t0].
Thus, on the first macro-interval I(0) the gobal convergence result for clas-

sical VIDEs holds: under appropriate assumptions on the regularity of the



solution (see Theorem 3.12 below) the collocation error can be estimated by

‖e(ν)
h ‖0,∞ := sup

t∈I(0)

|e(ν)
h (t)| ≤ Cν(h

(0))m, ν = 0, 1.

It follows in particular that e
(ν)
h (ξ1) = O((h(0))m).

This result allows us to derive an similar global error estimate on each
macro-interval I(µ) (1 ≤ µ ≤ M). We leave the detailed steps in this
recursive argument to the reader and simply summarize the result in the
following theorem.

Theorem 3.10. Let the following conditions hold.

(a) a, b, g ∈ Cm(I), and φ ∈ Cm+1[θ(t0), t0].

(b) K1 ∈ Cm(D), K2 ∈ Cm(Dθ).

(c) θ satisfies conditions (D1)–(D3) of Section 3.2.2, with d ≥ m in (D1).

(d) uh ∈ S
(0)
m (Ih) is the collocation solution to the delay VIDE (3.45),

(3.46) where Ih is θ-invariant and h ∈ (0, h̄) so that the linear algebraic
systems (3.52) all have unique solutions.

Then the estimates

‖y(ν) − u
(ν)
h ‖∞ ≤ Cνh

m, ν = 0, 1 (3.56)

hold for any set {ci} of distinct collocation parameters in [0, 1]. The con-
stants Cν depend on these parameters but are independent of h.

As for second-kind VIEs with non-vanishing delays, a gain of one can be
achieved in the global order of convergence of uh by a judicious choice of the
{ci}, thus extending the global superconvergence result for classical VIDEs
(Brunner and van der Houwen (1986) or Brunner (2004b, Chapter 3)).

Theorem 3.11. Let the assumed degree of regularity for the given func-
tions in the initial-value problem for the linear delay VIDE (3.45), (3.46)
be raised by one (to m+ 1 and m+ 2, respectively) in Theorem 3.10. If the
collocation parameters satisfy the orthogonality condition

J0 :=

∫ 1

0

m∏

i=1

(s − ci) ds = 0

then, for all θ-invariant meshes Ih with h ∈ (0, h̄), the collocation solution

uh ∈ S
(0)
m (Ih) is globally superconvergent on I, that is,

‖y − uh‖∞ ≤ Chm+1, (3.57)

with C depending on the {ci} but not on h.



Proof. The key to establishing this global superconvergence result (and
the local superconvergence results in the next section) is the variation-of-
constants result of Theorem 2.7, where y and g are replaced, respectively,
by eh and δh, and where the initial conditions are given by eh(t) = 0 (t ≤ t0)
and eh(ξµ) = O((h(µ))m+1) (1 ≤ µ ≤ M ; h(µ) ≤ h). We note once more

that the image of a point t = t
(µ)
n + vh

(µ)
n ∈ σ

(µ)
n under θµ−ν (0 ≤ ν ≤ µ− 1)

is given either by t
(ν)
n + vh

(ν)
n (v ∈ [0, 1]) if θ is linear, or by t

(ν)
n + ṽh

(ν)
n (for

some ṽ ∈ [0, 1], with ṽ �= v) if θ is nonlinear.
Details of the proof are left as an exercise.

Remark. The convergence results of Theorems 3.12 and 3.13 contain, as
special cases, global convergence and superconvergence results for DDEs
(for Ki = 0 on D and Dθ, respectively).

3.4.3. Local superconvergence results

In the previous section we described the foundation for proving optimal su-
perconvergence results on Ih for the collocation solution uh ∈ Sm((0)(Ih) to
the linear delay VIDE (3.45), (3.46): it is given by the variation-of-constants
formula (or ‘resolvent representation’) for the collocation error eh := y−uh.
The essential ingredients of the proof of the local superconvergence result are
thus all in place: the θ-invariance of the mesh Ih and the resulting mapping

(3.4), (3.5) of mesh points t
(µ)
n into corresponding previous mesh points t

(ν)
n

(which is of course true regardless of whether the delay function θ is linear
or nonlinear) and the order of the quadrature errors corresponding to the
interpolatory m-point quadrature formulas based on the collocation points
and depending on the familiar orthogonality conditions for the collocation
parameters {ci}. Thus, without any more ado we state the following result.

Theorem 3.12. Let the following be satisfied.

(a) The given functions a, b, g and K1, K2 in the DVIDE (3.45), (3.46)
are in Cm+κ on their respective domains, for some κ with 1 ≤ κ ≤ m,
as specified in (d).

(b) The delay function θ is subject to (D1)–(D3), with d ≥ m+κ in (D1).

(c) uh ∈ S
(0)
m (Ih) is the collocation solution, with θ-invariant mesh Ih, for

the given delay VIDE.

(d) The collocation parameters {ci} are such that the orthogonality con-
ditions of Theorem 3.6,

Jν :=

∫ 1

0
sν

m∏

i=1

(s − ci) ds = 0, ν = 0, 1, . . . , κ − 1,

with Jκ �= 0, hold.



Then, for all h ∈ (0, h̄) (Theorem 3.9), the collocation error eh := y − uh

satisfies

max
t∈Ih

|eh(t)| ≤ Chm+κ, (3.58)

for some constant C which depends on the {ci} but not on h.
If, in addition, cm = 1 (implying κ ≤ m − 1), then we also have

max
t∈Ih\{t0}

|e′h(t)| ≤ C1h
m+κ. (3.59)

4. Basic theory of Volterra functional integral equations II:
(vanishing) proportional delays

4.1. The pantograph equation: ca. 1971

The linear DDE with constant coefficients,

y′(t) = ay(t) + by(qt), t ∈ I := [0, T ], 0 < q < 1, (4.1)

arose in the mathematical modelling of the wave motion in the supply line
to an overhead current collector (pantograph) of an electric locomotive (see
Ockendon and Tayler (1971) and Fox, Mayers, Ockendon and Tayler (1971);
also Tayler (1986, pp. 40–45, 50–53)). The resulting pantograph equation is
a (seemingly!) very simple example of a DDE with vanishing variable delay:
here, we have θ(t) = t − τ(t), with τ(t) = (1 − q)t ≥ 0.

A special case of (4.1) is the ‘pure delay’ equation

y′(t) = by(qt), t ≥ 0, y(0) = y0, b �= 0. (4.2)

Its (unique) solution is given by

y(t) =

∞∑

j=0

qj(j−1)/2

j!
(bt)j · y0, t ≥ 0. (4.3)

The following result can be found in Kato and McLeod (1971); compare also
Frederickson (1971), Morris, Feldstein and Bowen (1972), Carr and Dyson
(1976), Derfel (1990), Iserles (1993), and Terjéki (1995).

Theorem 4.1. For any q ∈ (0, 1) and any y0 the delay differential equa-
tion (4.1) possesses a unique solution y ∈ C1(I) with y(0) = y0, regardless
of the choice of a, b �= 0, and T > 0. It is given by

y(t) =
∞∑

n=0

γn(q)tn,

where

γn(q) :=
1

n!

n∏

j=1

(a + bqj−1).



Proof. We apply Picard iteration to the equivalent Volterra integral equa-
tion,

y(t) = y0 +

∫ t

0
(ay(s) + by(qs)) ds, t ∈ I.

It can be shown that the resulting sequence {yn(t)} (n ≥ 0, y0(t) := y0)
converges uniformly on any interval I. Moreover, setting

y(t) :=
∞∑

n=0

γn(q)tn,

one verifies that the power series has infinite radius of convergence, since its
coefficients satisfy

γn

γn−1
=

1

n
[a + bqn−1], n ≥ 1.

Remarks. (1) The survey paper by Iserles (1993) presents an illuminat-
ing introduction into the complex world of solutions to (4.1) and its gen-
eralizations; it also contains an extensive bibliography. The pantograph
equation and its matrix version is also studied, within the framework of
Volterra functional integral equations, in Chambers (1990, pp. 40–43).

(2) The above result on the existence and uniqueness of solutions remains
true for (4.1) with variable coefficients a, b ∈ C(I). More precisely, if
a, b ∈ Cm(I) then, for any q ∈ (0, 1) and any y0, the solution y lies in
Cm+1(I). Properties of solutions of nonlinear versions of these equations
(e.g., Riccati-type equations) can be found in Iserles (1994a) and Iserles and
Terjéki (1995).

(3) These results confirm a crucial difference between the regularity of
solutions to DDEs with non-vanishing delays and those of pantograph-type
DDEs: for the latter, smooth data lead to solutions that are smooth on the
entire interval [0, T ]. In particular, solutions to (4.2) are entire functions of
order zero. It follows from classical complex function theory (Ahlfors’ the-
orem) that an entire function of order zero cannot have finite asymptotes.
This implies that, for b < 0, nontrivial solutions of (4.2) are not bounded
on R

+; also, the number of sign changes (zeros) is infinite. (See also Iserles
(1993), Iserles (1997b), and Liu (1997).) To give the reader an idea of how
these zeros depend on q, Table 4.1 exhibits a representative sample of zeros
of y. Additional information (for q = 1/4, q = 3/4) can be found in Iserles
(1993, p. 5).

The maximum of |y(t)| in the interval given by the last listed zero and
the following one exceed 1015. We note in passing that the papers by Iserles
(1997b) and Liu (1997) nicely describe and illustrate the various difficulties



Table 4.1. Zeros of y(t) for b = −1.

q = 0.05 q = 0.5 q = 0.95

z1 = 1.02631 z1 = 1.48808 z1 = 8.96684

z2 = 40.3651 z2 = 4.88114 z2 = 10.8942
...

...
...

z3 = 1205.57 z10 = 5223.38 z46 = 5258.99

one encounters in the long-time approximation of solutions to the ‘innocent’
pantograph equation (4.1).

The reader interested in details on the asymptotic distribution of the zeros
of such solutions may wish to consult the 1992 paper by Elbert (which
includes a reference to the first study of this subject, a 1967 report by
Feldstein and Kolb). The papers by Iserles (1994b), Iserles and Terjéki
(1995), and Feldstein and Liu (1998) contain a wealth of results on nonlinear

pantograph DDEs, including Riccati-type functional equations.

4.2. Linear Volterra integral equations with proportional delays

We now return to one of the particular delay VIEs considered by Andreoli
(1913, 1914), and to his important remark regarding the effect the (van-
ishing) proportional delay has on the representation of its solution. In the
notation employed in this paper this equation is

y(t) = g(t) +

∫ qt

0
K(t, s)y(s) ds, t ∈ I := [0, T ], 0 < q < 1, (4.4)

where g and K are continuous functions.

Theorem 4.2. Let g and K in (4.4) satisfy g ∈ C(I) and K ∈ C(Dθ),
where Dθ := {(t, s) : 0 ≤ s ≤ θ(t), t ∈ I}. Then, for any θ(t) := qt
with q ∈ (0, 1), the delay integral equation (4.4) possesses a unique solution
y ∈ C(I). This solution is given by

y(t) = g(t) +
∞∑

n=1

∫ qnt

0
Kn(t, s)g(s) ds

= g(t) +

∫ t

0

(
∞∑

n=1

qnKn(t, qns)g(qns)

)

ds, t ∈ I. (4.5)



The iterated kernels Kn(t, s) = Kn(t, s; q) (n ≥ 1) are obtained recurs-
ively by

Kn+1(t, s) :=

∫ qt

q−ns
K(t, v)Kn(v, s) dv, (t, s) ∈ D

(n+1)
θ , n ≥ 1,

with K1(t, s) := K(t, s) and

D
(k)
θ := {(t, s) : 0 ≤ s ≤ qkt, t ∈ I}.

Remark. For q = 1, the solution representation (4.5) reduces to the clas-
sical ‘separable’ expression involving the resolvent kernel R(t, s) (as the limit
of the Neumann series) of K(t, s). Theorem 4.2 shows that for 0 < q < 1
such a resolvent representation of the solution no longer exists: the values
of the iterated kernels ‘overlap’ with those of g. However, the infinite series
in (4.5) still converges uniformly on any compact interval I, as Lemma 4.3
below will make clear.

Proof. The Picard iteration process we applied to the integrated form of
the pantograph DDE can of course be used for the delay VIE (4.4), with
suitably adapted Dirichlet’s formula when changing the order of integration
in the double integrals: here, the resulting limits of integration now depend
on the iteration number n. To see this in some more detail, we have, setting
y0(t) := g(t),

y1(t) := g(t) +

∫ qt

0
K1(t, s)g(s) ds

and hence

y2(t) := g(t) +

∫ qt

0
K1(t, s)

(

g(s) +

∫ qs

0
K1(s, v)g(v) dv

)

ds

= g(t) +

∫ qt

0
K1(t, s)g(s) ds +

∫ qt

0

(∫ qt

q−1v
K1(t, s)K1(s, v) ds

)

y(v) dv.

It is now easily verified by induction that the iterated kernels Kn(t, s) of
the given kernel K(t, s) =: K1(t, s) are generated recursively by

Kn+1(t, s) =

∫ qt

q−ns
K(t, v)Kn(v, s) dv, (t, s) ∈ D

(n+1)
θ , n ≥ 1

(see also Chambers (1990)). Hence the iterate yk(t) can be expressed in the
form (4.5) where the index of summation ranges from 1 to k.

Lemma 4.3. Uniform bounds on I = [0, T ] for the iterated kernels Kn(t, s)
defined in Theorem 4.2 are given by

|Kn(t, s)| ≤ qn(n−1)/2

(n − 1)!
Tn−1K̄n

θ , (t, s) ∈ D
(n)
θ , n ≥ 1,



where we have set K̄θ := max(Dθ) |K(t, s)|.

We leave the proof of this simple result, as well as that of the uniqueness
of the solution (4.5), as an exercise.

The existence, uniqueness and regularity properties hold also for the more
general linear delay VIE with proportional delay,

y(t) = g(t) + (Vy)(t) + (Vθy)(t), t ∈ I, (4.6)

corresponding to the Volterra integral operators

(Vy)(t) :=

∫ t

0
K1(t, s)y(s) ds, (Vθy)(t) :=

∫ θ(t)

0
K2(t, s)y(s) ds,

with θ(t) := qt (0 < q < 1), K1 ∈ C(D) and K2 ∈ C(Dθ).

Theorem 4.4. Assume that K1 ∈ Cd(D) and K2 ∈ Cd(Dθ), for some
d ≥ 0. Then the delay integral equation (4.6) with θ(t) = qt (0 < q < 1)
has a unique solution y ∈ Cd(I) for any g with g ∈ Cd(I).

Proof. Theorem 4.2 shows that the iterated kernels Kn(t, s) associated
with the kernel K of the special delay integral equation (4.4) inherit the
regularity of K. Since the additional term (Vy)(t) in the general linear
delay VIE (4.6) will not lead to lower regularity in the Picard iteration
process, the assertion of Theorem 4.4 follows from the uniform convergence
of the Picard iterates on I, for any q ∈ (0, 1).

We shall see in Section 4.5 that this regularity result can also be derived
by means of embedding techniques.

Remark. The paper by Morris et al. (1972, pp. 518–523) contains an il-
luminating discussion of the connection between general pantograph DDEs
and certain Volterra integral and integro-differential equations with (mul-
tiple) proportional delays. Compare also Iserles and Liu (1994).

4.3. First-kind Volterra integral equations with vanishing delays

In Section 1.1.1 we briefly alluded to the fact that in his Nota I of 1896
Volterra studied the problem of ‘inverting’ definite integrals of the form

(Vy)(t) :=

∫ t

0
K(t, s)y(s) ds = g(t), t ∈ I := [0, T ], g(0) = 0,

where K ∈ C(D), and that he then went on (Volterra (1897), also Volterra
(1913, pp. 92–101)) to analyse the more general functional equation

(Wθy)(t) = g(t), t ∈ I, g(0) = 0, (4.7)



where the Volterra integral operator Wθ : C(I) → C(I) is

(Wθφ)(t) :=

∫ t

θ(t)
K(t, s)φ(s) ds, with θ(t) := qt (0 < q < 1). (4.8)

Under suitable conditions on K and g this equation can be transformed into
the equivalent second-kind equation

K(t, t)y(t) − qK(t, qt)y(qt) +

∫ t

qt

∂K(t, s)

∂t
y(s) ds = g′(t), t ∈ I (4.9)

(see also Fenyö and Stolle (1984, pp. 324–327) and Brunner (1997b)), to
which Picard iteration techniques can be applied. This reformulation was
the basis for Volterra’s 1897 result, which we now state. We set D̄θ :=
{(t, s) : 0 ≤ θ(t) ≤ s ≤ t ≤ T}.
Theorem 4.5. Assume:

(a) g ∈ C1(I), with g(0) = 0;

(b) K ∈ C(D̄θ), ∂K/∂t ∈ C(D̄θ), with |K(t, t)| ≥ k0 > 0 (t ∈ I).

Then, for each θ(t) = qt with q ∈ (0, 1), the first-kind delay integral equation
(4.7) possesses a unique solution y ∈ C(I).

The above result was generalized by Lalesco (1908, 1911) and – much
later – by Denisov and Korovin (1992) and Denisov and Lorenzi (1995).
From the latter paper we cite the following result.

Theorem 4.6. Assume the lag function θ satisfies

(a) θ ∈ C3(I), with θ(0) = 0, θ′(0) = 1, θ′′(0) < 0, θ(t) < t (t ∈ (0, T ]),
θ′(t) > 0 for t ∈ I,

and let

(b) g ∈ C2(I), with g(0) = g′(0) = 0;

(c) K ∈ C3(D̄θ), with |K(t, t)| ≥ k0 > 0 (t ∈ I).

Then the first-kind delay integral equation (Wθy)(t) = g(t) has a unique
solution y ∈ C(I).

Remark. A similar result was proved in Denisov and Korovin (1992), but
under the hypothesis that θ′(0) < 1. If, as in the above theorem, θ′(0) = 1,
the domain D̄θ has a cusp at the point (t, s) = (0, 0), and new techniques
are needed to deal with this situation. We note that the case θ′(0) = 1 was
already treated, albeit in a somewhat sketchy way, by Lalesco in 1911.

4.4. Volterra integro-differential equations with proportional delays

In order to obtain some first insight into the properties of solutions of lin-
ear VIDEs with proportional delays we will first consider the ‘pure delay’



problem

y′(t) = g(t) +

∫ qt

0
K(t, s)y(s) ds, t ∈ I := [0, T ], y(0) = y0, (4.10)

assuming that g ∈ C(I), K ∈ C(Dθ), with θ(t) = qt and 0 < q < 1. This
initial-value problem is equivalent to the delay VIE

y(t) = g0(t) +

∫ qt

0
H(t, s; q)y(s) ds, t ∈ I, (4.11)

where

g0(t) := y0 +

∫ t

0
g(s) ds, H(t, s; q) :=

∫ t

q−1s
K(v, s) dv.

We now apply Theorem 4.2: setting H1(t, s) := H(t, s; q), and denoting by
Hn(t, s) the corresponding iterated kernels, the (unique) solution y of (4.11)
(which, since g0 and H(·, ·; q) are continuously differentiable functions, lies
in C1(I)) can be expressed in the form

y(t) = g0(t) +
∞∑

n=1

∫ qnt

0
Hn(t, s)g0(s) ds, t ∈ I,

where the infinite series converges absolutely and uniformly. If we now sub-
stitute the expressions for g0(t), an obvious rearrangement (using Dirichlet’s
formula) leads to the following result.

Theorem 4.7. Under the above assumptions on g and K, the unique solu-
tion y ∈ C1(I) to the initial-value problem (4.10) has the representation

y(t) =

(

1 +
∞∑

n=1

H̃n(t, 0)

)

y0 +
∞∑

n=0

∫ qnt

0
H̃n(t, s)g(s) ds, t ∈ I.

Here, we have set H̃0(t, s) := 1 ((t, s) ∈ D),

H̃n(t, s) :=

∫ qnt

s
Hn(t, v) dv, n ≥ 1,

and we note that

H̃n(t, 0) =

∫ qnt

0
Hn(t, v) dv, n ≥ 1.

The initial-value problem for the general linear VIDE with proportional
delay,

y′(t) = a(t)y(t) + b(t)y(qt) + g(t) + (Vy)(t) + (Vθy)(t), t ∈ I, (4.12)



with θ(t) = qt (0 < q < 1), is equivalent to the delay VIE

y(t) = g0(t) +

∫ t

0

(

a(s) +

∫ t

s
K1(v, s) dv

)

y(s) ds

+

∫ qt

0

(

(1/q)b(s/q) +

∫ t

q−1s
K2(v, s) dv

)

y(s) ds

=: g0(t) +

∫ t

0
G1(t, s)y(s) ds +

∫ qt

0
G2(t, s; q)y(s) ds,

where

g0(t) := y0 +

∫ t

0
g(s) ds.

The regularity of the kernels G1 and G2(· ; · ; q) is determined by that of the
original data a, b and K1, K2. Thus, Theorem 4.4 implies the following
result.

Theorem 4.8. Assume:

(a) a, b, g ∈ Cd(I) for some d ≥ 0;

(b) K1 ∈ Cd(D) and K2 ∈ Cd(Dθ).

Then, for each initial value y0, the delay VIDE (4.12) possesses a unique
solution y ∈ Cd+1(I).

4.5. Embedding techniques

The embedding of a (proportional) delay differential equation into an infinite
system of ordinary differential equations was studied in detail by Feldstein,
Iserles and Levin (1995). The motivation behind their approach was to ex-
plore another way for obtaining results on the asymptotic stability (or the
boundedness) of solutions of such DDEs, and for constructing feasible meth-
ods for their numerical solution. It also permits the derivation of existence
and regularity results for the exact solutions.

Here, we extend these embedding techniques to the delay Volterra integral
equation (4.6) and to the delay Volterra integro-differential equation (4.12).
Note that these Volterra functional equations contain the important special
cases characterized by K2(t, s) = −K1(t, s) =: −K(t, s):

y(t) = g(t) + (Wθy)(t), t ∈ I, (4.13)

and

y′(t) = a(t)y(t) + b(t)y(qt) + (Wθy)(t), t ∈ I, y(0) = y0, (4.14)

corresponding to the delay Volterra operator Wθ defined in (4.8). The fol-
lowing embedding results (which can be extended to the nonlinear counter-
parts of the above pantograph-type Volterra equations) contain the key not



only to establishing results on the existence, uniqueness, and regularity of
solutions but also to the analysis of the local superconvergence properties
of collocation solutions to such functional equations.

4.5.1. Embedding results for the delay VIE (4.6)

Lemma 4.9. The delay VIE (4.6) can be embedded into an infinite-dimen-
sional system of ‘classical’ VIEs of the second kind,

zν(t) = gν(t) +

∫ t

0
(K1,ν(t, s)zν(s) + K2,ν(t, s)zν+1(s)) ds, ν ∈ N0, (4.15)

where

zν(t) := y(qνt), gν(t) := g(qνt)

and

K1,ν(t, s) := qνK1(q
νt, qνs), K2,ν(t, s) := qν+1K2(q

νt, qν+1s).

The proof of this embedding result is straightforward and will thus be left
as an exercise.

Consider now the truncated (finite) system corresponding to (4.15),

zM,ν(t) = gν(t) +

∫ t

0
(K1,ν(t, s)zM,ν(s) + K2,ν(t, s)zM,ν+1(s)) ds, (4.16)

ν = 0, 1, . . . , M − 1,

zM,M (t) = gM (t) +

∫ t

0
K1,M (t, s)zM,M (s) ds, t ∈ I. (4.17)

Lemma 4.10. Assume that g ∈ C(I), K1 ∈ C(D), K2 ∈ C(Dθ). Then,
for ν = M , M − 1, . . . , 0, the (unique) solution of (4.16) and (4.17) satisfies

‖zν − zM,ν‖∞ ≤ CqM̃ , with M̃ ≥ M + 1.

Proof. Setting εM,ν := zν − zM,ν , it follows from (4.16) and (4.17) that

εM,ν(t) =

∫ t

0
K1,ν(t, s)εM,ν(s) ds + ΦM,ν(t), t ∈ I, (4.18)

for ν = 0, 1, . . . , M , with

Φm,ν(t) :=







∫ t

0
K2,M (t, s)zM+1(s) ds, if ν = M ,

∫ t

0
K2,ν(t, s)εM,ν+1(s) ds, if M − 1 ≥ ν ≥ 0.

Let R1,ν = R1,ν(t, s) denote the resolvent kernel associated with the kernel
K1,ν in (4.15); we know from classical Volterra theory that K1 ∈ C(D)



implies R1,ν ∈ C(D) for all ν ≥ 0. The (unique) solution of the finite
system (4.18) may thus be written as

εM,ν(t) =

∫ t

0
R1,ν(t, s)ΦM,ν(s) ds + ΦM,ν(t), t ∈ I, (4.19)

for ν = M , M − 1, . . . , 0. Since |K2,ν(t, s)| ≤ K̄2q
ν+1, (t, s) ∈ Dθ, where

K̄2 := maxDθ
|K2(t, s)|, setting ν = M in (4.18) leads to

|εM,M (t)| ≤ CqM+1, t ∈ I.

Thus, assuming that ‖ε‖∞ ≤ CqM̃ (M̃ ≥ M) for ν = M , M −1, . . . , M0 +1,
we find

|ΦM0,ν(t)| ≤ K̄2Tqν+1C0q
M̃ =: CqM̃+ν+1, ν ≥ M̃ + 1,

and hence,

|εM,M0(t)| ≤ CqM̃ , t ∈ I, with M̃ ≥ M + 1.

This establishes the uniform bounds in Lemma 4.10.

4.5.2. Embedding results for the delay VIDE (4.12)
Lemma 4.11. The delay VIDE (4.12) can be embedded into an infinite-
dimensional system of ‘classical’ VIDEs, namely,

z′ν(t) = ãν(t)zν(t)+ b̃ν(t)zν+1(t)+

∫ t

0

(
K̃1,ν(t, s)zν(s)+K̃2,ν(t, s)zν+1(s)

)
ds,

(4.20)
for ν ∈ N0, with

ãν(t) := qνa(qνt), b̃ν(t) := qνb(qνt),

and

K̃i,ν(t, s) := qνKi,ν(t, s), i = 1, 2.

The kernels Ki,ν are those defined in Lemma 4.9.

This easily verified result leads to the VIDE analogue of Lemma 4.10.

Lemma 4.12. Assume that a, b ∈ C(I), K1 ∈ C(D), and K2 ∈ C(Dθ).
Then the (unique) solution of the truncated (finite) system of VIDEs cor-
responding to (4.20),

z′M,ν(t) = ãν(t)zM,ν(t) + b̃ν(t)zM,ν+1(t)

+

∫ t

0

(
K̃1,ν(t, s)zM,ν(s) + K̃2,ν(t, s)zM,ν+1(s)

)
ds, (4.21)

ν = 0, 1, . . . , M − 1,

z′M,M (t) = ãν(t)zM,M (t) +

∫ t

0
K̃1,M (t, s)zM,M (s) ds, t ∈ I, (4.22)



with zM,ν(0) = y0, satisfies

‖zν(t) − zM,ν(t)‖∞ ≤ CqM̃ , ν = 0, 1, . . . , M, with M̃ ≥ M.

Proof. Setting εM,ν := zν − zM,ν , we have

ε′M,ν(t) = ãν(t)εM,ν(t) +

∫ t

0
K̃1,ν(t, s)εM,ν(s) ds + ΨM,ν(t), t ∈ I, (4.23)

with εM,ν(0) = 0, for ν = M, M − 1, . . . , 0. Here,

ΨM,ν(t) :=







b̃M (t)zM+1(t) +

∫ t

0
K̃2,M (t, s)zM+1(s) ds, if ν = M ,

b̃ν(t)εM,ν+1(t) +

∫ t

0
K̃2,ν(t, s)εM,ν+1(s) ds, if ν < M.

Let r1,ν = r1,ν(t, s) denote the (differential) resolvent kernel correspond-

ing to the functions ãν and K̃1,ν in (4.20); that is, r1,ν is defined by the
(unique) solution of the (differential) resolvent equation

∂r1,ν(t, s)

∂s
= −r1,ν(t, s)ãν(s) −

∫ t

s
r1,ν(t, z)K̃1,ν(z, s) dz, (t, s) ∈ D,

with r1,ν(t, t) = 1, t ∈ I. The solution of the initial-value problem (4.21)
can then be written in the form

εM,ν(t) = r1,ν(t, 0)εM,ν(0) +

∫ t

0
r1,ν(t, s)ΨM,ν(s) ds, t ∈ I, (4.24)

for ν = M, M − 1, . . . , 0, where εM,ν(0) = 0 for all ν.
Using the estimate

|ΨM,M (t)| ≤ γ0q
M + γ1q

2M+1, t ∈ I,

for finite constants γ1 (recall that K̃2,ν(t, s)=qνK2,ν(t, s), with |K2,ν(t, s)|≤
K̄2q

ν+1), we derive for ν = M that

|εM,M (t)| ≤ C0q
M + C1q

2M+1 =: CqM , t ∈ I,

where C = C(q, M) < ∞ for M ∈ N0 and q ∈ (0, 1).
For ν < M the argument for bringing the proof to its conclusion is ana-

logous to the one in the proof of Lemma 4.10, except that now we employ
the representation (4.24) and the estimate for ‖εM,M‖∞. Details are left to
the reader.

Remark. The (uniform) convergence results in Lemmas 4.10 and 4.12
allow us not only to deduce the existence of unique solutions to the delay
problems (4.6)) and (4.12) but also to establish the global regularity results
already alluded to: Cm-data imply that the solutions of the DVIE and the
DVIDE lie, respectively, in Cm(I) and Cm+1(I). We also encourage the



reader to verify that the above embedding techniques can be extended to
nonlinear Volterra equations with proportional delays, or with more general
nonlinear vanishing delays described in Section 5.7.

5. Collocation methods for pantograph-type VFIEs

5.1. Numerical analysis of pantograph-type equations: an overview

The systematic study of the theory and the numerical analysis of the pan-
tograph DDE and its various generalizations began with the papers by
Ockendon and Tayler (1971), Fox et al. (1971), and Kato and McLeod
(1971). While the theory of such functional equations almost immediately
received much attention (see, for example, Frederickson (1971), Kato (1972),
Bélair (1981), Derfel (1990, 1991), Kuang and Feldstein (1990), Derfel and
Molchanov (1990), Iserles (1993, 1997a, 1994b), Terjéki (1995), Iserles and
Terjéki (1995), Derfel and Vogl (1996), Liu (1996a), Iserles and Liu (1997),
Feldstein and Liu (1998)), numerical analysts were singularly inattentive to
the challenges of their numerical analysis: the fundamental paper on the
numerical solution of the pantograph DDE (and its formulation as a Vol-
terra functional equation) by Fox et al. (1971) stood alone until the early
1990s, when Buhmann and Iserles (1992, 1993), Iserles (1993), and Buh-
mann, Iserles and Nørsett (1993) understood that this class of functional
differential equations represents a rich source of deep mathematical prob-
lems, both for the ‘pure’ and the numerical analyst.

5.1.1. Numerical analysis of the pantograph DDE

In the contributions just mentioned, the focus was on the asymptotic proper-
ties of numerical approximations, by linear multistep and simple collocation
methods, for the pantograph equation (4.1). The survey by Iserles (1994a)
and the papers of Iserles (1994c, 1997a, 1997b), Y. Liu (1995a, 1995b, 1996a,
1996b, 1997), Liang and Liu (1996), Liang, Qiu and Liu (1996), Bellen et

al. (1997), Carvalho and Cooke (1998), Koto (1999), Liang and Liu (1996),
Bellen (2001), Liu and Clements (2002), and Guglielmi and Zennaro (2003)
describe various extensions of these early stability results, both on uniform
and (quasi-) geometric meshes. Compare also the monograph by Bellen and
Zennaro (2003) for a survey of many of these results, and Brunner (2004a)
for additional references.

Collocation methods and their (super-) convergence properties are con-

sidered in Buhmann et al. (1993) (for uh ∈ S
(0)
1 (Ih) and q = 1/2), Brunner

(1997a), Zhang (1998), Zhang and Brunner (1998), Takama, Muroya and
Ishiwata (2000), and Brunner (2004b, Chapter 5). While these properties
are now reasonably well understood, this is not true for the qualitative as-
pects of piecewise polynomial (and continuous Runge–Kutta) methods: as



shown in, e.g., Buhmann et al. (1993), the present understanding is still at
a very primitive level (except possibly when q = 1/2).

5.1.2. Volterra functional equations with proportional delays

Fox et al. (1971, pp. 292–295) used the integrated form of the pantograph
equation, i.e., a Volterra functional integral equation, to analyse the er-
ror induced by a variant of the classical Lanczos τ -method. Collocation
methods for Volterra integral and integro-differential equations with pro-
portional delays were studied in detail in Brunner (1997a), Zhang (1998),
Zhang and Brunner (1998) (for second-order Volterra functional integro-diff-
erential equations), Takama et al. (2000), Ishiwata (2000), Muroya, Ishiwata
and Brunner (2002), and Bellen et al. (2002). In these papers the focus is on
the attainable orders of global and local (super-) convergence in collocation
solutions. See also the survey by Brunner (2004a).

As we shall see in Section 5.8 the analysis of the asymptotic behaviour of
collocation solutions to pantograph-type Volterra integral and integro-diff-
erential equations is completely open.

5.2. Piecewise polynomial collocation methods

5.2.1. Discretization on uniform meshes: overlap

The collocation equations corresponding to the pantograph-type delay Vol-
terra equations to be discussed in Sections 5.2–5.3 will contain the delay
integral terms (Vθuh)(t) and (Wθuh)(t), where θ(t) = qt (0 < q < 1) and
t = tn,i := tn + cihn ∈ Xh ∩ σn. Thus, the structure of the difference
equations corresponding to these collocation points will be governed by the
location of the images of these collocation points,

θ(tn,i) = q(tn + cihn), i = 1, . . . , m.

For arbitrary non-uniform meshes these difference equations are obviously
very complex. Therefore, in order to make the analysis tractable, we will
for the present assume that the mesh Ih is uniform:

Ih := {tn := nh : n = 0, 1, . . . , N ; tN = T}.
For a uniform mesh Ih and t = tn,i := tn + cih ∈ Xh we will write

θ(tn,i) = q(tn + cih) =: h{qn,i + γn,i} = tqn,i
+ γn,ih, (5.1)

where

qn,i := ⌊q(n + ci)⌋ ∈ N0, γn,i := q(n + ci) − qn,i ∈ [0, 1).

For given collocation parameters with 0 < c1 < · · · < cm ≤ 1 and q ∈ (0, 1)
define

qI := ⌈qc1/(1 − q)⌉, qII := ⌈qcm/(1 − q)⌉. (5.2)



Here, ⌊x⌋ is the greatest integer not exceeding x ∈ R, and ⌈x⌉ denotes the
least upper integer bound for x.

The validity of the following lemma – which characterizes the ‘overlap’ of
the images of the collocation points under the mapping θ – is easily verified.

Lemma 5.1. Let q ∈ (0, 1) and 0 < c1 < · · · < cm ≤ 1, and assume that
Ih is a uniform mesh on I := [0, T ] with diameter h := T/N . Then:

(i) for n = 0 we have q(tn + cih) ∈ (tn, tn+1) for i = 1, . . . , m,

(ii) if n ≥ 1 we have q(tn + cih) ∈ (tn, tn+1) if and only if n < qI ,

(iii) q(tn + cih) ≤ tn for i = 1, . . . , m if and only if qII ≤ n ≤ N − 1.

This result reveals that the recursive computation of the collocation solu-
tion for functional equations with (vanishing) proportional delay consists in
general of three phases.

Phase I. During this ‘initial phase’ we have complete overlap which is
described by the values of n satisfying

0 ≤ n <

⌈
q

1 − q
c1

⌉

=: qI .

Phase II. The ‘transition phase’ corresponds to those n where partial over-

lap occurs; they are given by

qI ≤ n <

⌈
q

1 − q
cm

⌉

=: qII .

If this set of indices n is non-empty, there exists a νn ∈ {1, . . . , m − 1} so
that

q(tn + cih) ≤ tn (i ≤ νn) and q(tn + cih) > tn (i > νn).

Phase III. In this ‘pure delay phase’, described by

qII ≤ n ≤ N − 1,

there is no longer any overlap of θ(tn,i) and tn,i: we have

q(tn + cih) ≤ tn for i = 1, . . . , m.

More precisely, for such a value of n there exist integers νn ∈ {1, . . . , m}
and qn < n − 1 such that

qn,i = qn (i ≤ νn) and qn,i = qn+1 (i > νn).

Note that the integers qI and qII do not depend on the underlying mesh
and are thus independent of N .



Illustration. We list a selection values of qI and qII for m = 2 and m = 3,
corresponding to the

Gauss points:

m = 2 : c1 = (3 −
√

3)/6, c2 = (3 +
√

3)/6,

m = 3 : c1 = (5 −
√

15)/10, c2 = 1/2, c3 = (5 +
√

15)/10.

Radau II points:

m = 2 : c1 = 1/3, c2 = 1,

m = 3 : c1 = (4 −
√

6)/10, c2 = (4 +
√

6)/10, c3 = 1.

Table 5.1. m = 2.

Gauss points Radau II points

q 1/2 2/3 0.9 0.99 1/2 2/3 0.9 0.99
qI 1 1 2 21 1 1 3 33
qII 1 2 8 79 1 2 9 99

Table 5.2. m = 3.

Gauss points Radau II points

q 1/2 2/3 0.9 0.99 1/2 2/3 0.9 0.99
qI 1 1 2 12 1 1 2 16
qII 1 2 8 88 1 2 9 99

5.3. Second-kind VIEs with proportional delays

5.3.1. The structure of the collocation equations

The collocation solution uh ∈ S
(−1)
m−1(Ih) for the delay integral equation (4.6)

is defined by

uh(t) = g(t) + (Vuh)(t) + (Vθuh)(t), t ∈ Xh, (5.3)

with θ(t) = qt (0 < q < 1) and Xh given by (3.2) (hn = h). The contribution
of the delay term (Vθuh)(tn,i) to the collocation equation (5.3) will depend



on n and the location of the collocation parameters {ci}: it follows from the
definition of qn,i and γn,i in (5.1) that

(Vθuh)(tn,i) =

∫ tqn,i

0
K(tn,i, s)uh(s) ds (5.4)

+ h

∫ γn,i

0
K(tn,i, tqn,i

+ sh)uh(tqn,i
+ sh) ds.

In order to obtain suitable computational forms of the collocation equa-
tion (5.3) (leading to systems of difference equations whose solution de-
scribes the collocation solution on I), we again express uh on the subinterval
σn by the local Lagrange representation,

uh(tn + vhn) =
m∑

j=1

Lj(v)Un,j , v ∈ (0, 1], 0 ≤ n ≤ N − 1, (5.5)

with

Lj(v) :=
m∏

k �=j

s − ck

cj − ck
and Un,j := uh(tn + cjhn),

and where we have assumed that hn = h = T/N for n = 0, 1, . . . , N − 1.
The above expression for (Vθuh)(tn,i) now becomes

(Vθuh)(tn,i) = h

qn,i−1
∑

ℓ=0

m∑

j=1

(∫ 1

0
K(tn,i, tℓ + sh)Lj(s) ds

)

Uℓ,j (5.6)

+ h
m∑

j=1

(∫ γn,i

0
K(tn,i, tqn,i

+ sh)Lj(s) ds

)

Uqn,i,j

(i = 1, . . . , m). Thus, the collocation equation (5.3) leads to a system of
linear difference equations for the vectors Un ∈ R

m (0 ≤ n ≤ N − 1)
whose structure will change as we pass from Phase I of complete overlap

(0 ≤ n < qI) via Phase II of partial overlap (qI ≤ n < qII) to the pure

delay Phase III (qIII ≤ n ≤ N − 1). To make this more precise, we set
gn := (g(tn,1), . . . , g(tn,m))T ∈ R

m and introduce the matrices

Bn :=

(∫ ci

0
K1(tn,i, tn + sh)Lj(s) ds

)m

i,j=1

, (5.7)

[2pt]Bn,ℓ :=

(∫ 1

0
K1(tn,i, tℓ + sh)Lj(s) ds

)m

i,j=1

, ℓ < n, (5.8)

in L(Rm). These matrices correspond to the contribution to the difference
equation due to the ‘classical’ (non-delay) Volterra operator V in (5.3). For
the concise formulation of the terms in the difference equation describing



Phases I, II and III and corresponding to the delay operator Vθ, we introduce
the following matrices in L(Rm).

Phase I.

BI
n(q) :=

(∫ γn,i

0
K2(tn,i, tn + sh)Lj(s) ds

)m

i,j=1

, (5.9)

BI
n,ℓ(q) :=

(∫ 1

0
K2(tn,i, tℓ + sh)Lj(s) ds

)m

i,j=1

, ℓ < n. (5.10)

Here, Un (0 ≤ n < qI) is given by the solution of

[Im − h(Bn + BI
n(q))]Un = gn + h

n−1∑

ℓ=0

(Bn,ℓ + BI
n,ℓ(q))Uℓ. (5.11)

Phase II.

BII
n (q) := diag(0, . . . , 0

︸ ︷︷ ︸

νn

, 1, . . . , 1)BI
n(q), (5.12)

BII
n−1(q) :=

(∫ γn,i

0
K2(tn,i, tn−1 + sh)Lj(s) ds

)m

i,j=1

, (5.13)

SII
n−1(q) := diag(0, . . . , 0

︸ ︷︷ ︸

νn

, 1, . . . , 1)BI
n,n−1(q), (5.14)

ŜII
n−1(q) := diag(1, . . . , 1

︸ ︷︷ ︸

νn

, 0, . . . , 0)BII
n−1(q). (5.15)

It is readily verified that now Un (qI ≤ n < qII) is determined by the
solution of

[Im − h(Bn + BII
n (q))]Un = gn + h

n−1∑

ℓ=0

Bn,ℓUℓ + h
n−2∑

ℓ=0

BI
n,ℓ(q)Uℓ

+ h[ŜII
n−1(q) + SII

n−1(q)]Un−1. (5.16)

Phase III.

BIII
qn

(q) :=

(∫ γn,i

0
K2(tn,i, tqn + sh)Lj(s) ds

)m

i,j=1

, (5.17)

SIII
qn+1(q) := diag(0, . . . , 0

︸ ︷︷ ︸

νn

, 1, . . . , 1)BIII
qn+1(q), (5.18)

ŜIII
qn

(q) := diag(1, . . . , 1
︸ ︷︷ ︸

νn

, 0, . . . , 0)BIII
qn

(q). (5.19)



Once we have reached this pure delay phase the vector Un (qII ≤ n ≤ N−1)
is given by the solution of

[Im − hBn]Un = gn + h
n−1∑

ℓ=0

Bn,ℓUℓ + h

qn−1
∑

ℓ=0

BI
n,ℓ(q)Uℓ (5.20)

+ h[ŜIII
qn

(q) + BI
n,qn

(q)]Uqn + hSIII
qn+1(q)Uqn+1.

The (different) integers νn occurring in Phases II and III, and the integer
qn < n − 1 in Phase III were defined following Lemma 5.1.

Example 5.1. Suppose that the second-kind delay VIE (4.4) is solved

by collocation in S
(−1)
0 (Ih), with uniform mesh Ih and collocation points

Xh = {tn + c1h : 0 < c1 ≤ 1 (0 ≤ n ≤ N − 1)}. Since uh is constant on
each subinterval σn we write yn+1 := uh(tn + vh) (v ∈ (0, 1]).

For m = 1 we have qI = qII = ⌈qc1/(1 − q)⌉. Hence, the collocation
equation (with V = 0) becomes

(

1 − h

∫ γn,1

0
K(tn,1, tn + sh) ds

)

yn+1

= h
n−1∑

ℓ=0

(∫ 1

0
K(tn,1, tℓ + sh) ds

)

yℓ+1 + g(tn,1)

when 0 ≤ n < qI . For qI ≤ n ≤ N − 1 it reads

yn+1 = g(tn,1) + h

qn,1−1
∑

ℓ=0

(∫ 1

0
K(tn,1, tℓ + sh) ds

)

yℓ+1

+ h

(∫ γn,1

0
K(tn,1, tqn,1+1 + sh) ds

)

yqn,1+1.

Thus, if K(t, s) ≡ b/q and g(t) ≡ 1 the collocation solution to the resulting
DVIE

y(t) = 1 +

∫ qt

0
(b/q)y(s) ds, t ∈ I

(which is equivalent to the initial-value problem y′(t) = by(qt), y(0) = 1) is
determined by the solution of the difference equation

yn+1 = 1 +
hb

q

qn,1−1
∑

ℓ=0

yℓ+1 +
hb

q
γn,1yqn,1+1, (5.21)

where qn,1 := ⌊qc1/(1 − q)⌋ and γn,1 := q(n + c1) − qn,1.



We list, also for use in Example 5.2, a sample of values of qn,1 and γn,1 for
c1 = 1/2, to provide some insight into the structure of the above difference
equations when collocation is at the Gauss point tn + h/2.

Table 5.3. q = 1/2, c1 = 1/2 (qI = qII = 1).

n 0 1 2 3 4 5 6

qn,1 0 0 1 1 2 2 3
γn,1 1/4 3/4 1/4 3/4 1/4 3/4 1/4

Table 5.4. q = 0.9, c1 = 1/2 (qI = qII = 5).

n 0 1 2 3 4 5 6

qn,1 0 1 2 3 4 4 5
γn,1 0.45 0.35 0.25 0.15 0.05 0.95 0.85

For Volterra functional equations governed by the special delay operator
Wθ (cf. (4.8)) we find – in complete analogy to the above – that (Wθuh)(tn,i)
is given by

(Wθuh)(tn,i) = h

∫ 1

γn,i

K(tn,i, tqn,i
+ sh)uh(tqn,i

+ sh) ds (5.22)

+

∫ tn

tqn,i+1

K(tn,i, s)uh(s) ds

+ h

∫ ci

0
K(tn,i, tn + sh)uh(tn + sh) ds.

This can be written as

(Wθuh)(tn,i) = h
m∑

j=1

(∫ 1

γn,i

K(tn,i, tqn,i
+ sh)Lj(s) ds

)

Uqn,i,j (5.23)

+ h
n−1∑

ℓ=qn,i+1

(∫ 1

0
K(tn,i, tℓ + sh)Lj(s) ds

)

Uℓ,j

+ h
m∑

j=1

(∫ ci

0
K(tn,i, tn + sh)KLj(s) ds

)

Un,j .



Hence, the collocation equation associated with y = g + Wθy,

uh(t) = g(t) + (Wθuh)(t), t ∈ Xh,

leads to the following systems of linear algebraic equations for Un ∈ R
m

describing the local representation (5.5) of uh ∈ S
(−1)
m−1(Ih (again with uni-

form Ih).

Phase I.

[Im − hB̄I
n(q)]Un = gn, 0 ≤ n < qI , (5.24)

with

B̄I
n(q) =

(∫ ci

γn,i

K(tn,i, tn + sh)Lj(s) ds

)m

i,j=1

,

which is formally equivalent to Bn+BI
n(q) in (5.11) when K2 = −K1 =: −K.

Phase II.

[Im − hB̄II
n (q)]Un = gn + hS̄II

n−1(q)Un−1, qI ≤ n < qII , (5.25)

where

B̄II
n (q) := diag(1, . . . , 1

︸ ︷︷ ︸

νn

, 0, . . . , 0)Bn + diag(0, . . . , 0
︸ ︷︷ ︸

νn

, 1, . . . , 1)B̄I
n(q),

and

S̄II
n−1(q) := diag(1, . . . , 1

︸ ︷︷ ︸

νn

, 0, . . . , 0)

(∫ 1

γn,i

K(tn,i, tn−1 + sh)Lj(s) ds

)

.

Phase III.

[Im−hBn]Un = gn+h[S̄III
qn

(q)Uqn+
n−1∑

ℓ=qn+1

Bn,ℓUℓ+SIII
qn+1(q)Uqn+1], (5.26)

with

S̄III
qn

(q) := diag(1, . . . , 1
︸ ︷︷ ︸

νn

, 0, . . . , 0)

(∫ 1

γn,i

K(tn,i, tqn + sh)Lj(s) ds

)

,

SIII
qn+1(q) := diag(1, . . . , 1

︸ ︷︷ ︸

νn

, 0, . . . , 0)Bn,qn+1

+ diag(0, . . . , 0
︸ ︷︷ ︸

νn

, 1, . . . , 1)

(∫ 1

γn,i

K(tn,i, tqn+1 + sh)Lj(s) ds

)

.

The matrices Bn,ℓ ∈ L(Rm) coincide with the ones in (5.8).



5.3.2. Optimal orders of convergence

Suppose that a given delay integral with (vanishing) proportional delay is

solved by collocation in S
(−1)
m−1(Ih), with the underlying mesh Ih being a

uniform one, and assume that the functions defining the functional equa-
tion have arbitrarily high degree of regularity on their respective domains
(implying, as we have seen in Theorem 4.4, that the exact solution has the
same regularity). What can be said, as h → 0, N → ∞ (Nh = T ) about
the optimal values of p and p∗ in the estimates

‖y − uh‖∞ := max{|y(t) − uh(t)| : t ∈ I} ≤ C(q)hp (5.27)

and

‖y − uh‖Ih,∞ := max{|y(t) − uh(t)| : t ∈ Ih \ {0}} ≤ C(q)hp∗? (5.28)

Do higher values of p and p∗ result for the iterated collocation solution uit
h

based on uh?
It turns out that we have p=m in the global estimate (5.27) if the set {ci}

is arbitrary; that is, the results that hold for ‘classical’ VIEs of the second
kind remain valid. However, the question regarding the optimal value of p∗ in
(5.28) (attainable order of local superconvergence on Ih \{0}) has an answer
that differs sharply from the one for non-delay VIEs. Moreover, we shall see
that it is not yet known under what conditions on the collocation parameters
{ci} the collocation solutions uh to the first-kind delay VIE (5.27) converge
uniformly on I to the exact solution y (see also Section 5.2.1).

Theorem 5.2. Consider the second-kind delay VIE (4.6) and assume that
the given functions g, K1, K2 are at least m times continuously differentiable
on their respective domains. Then, for all sufficiently small h > 0 (so that
the difference equations (5.11), (5.16), (5.20) possess unique solutions), we
have p = m in (5.27) for arbitrary {ci} in Xh and for all delay functions
θ(t) = qt with 0 < q < 1. The constant C(q) depends on the {ci} and on q
but not on h.

The proof of this result is an adaptation of the one for classical second-
kind VIEs and delay VIEs with non-vanishing delays: it consists in showing
that in each of the Phases I–III the ℓ1-norms of the vectors Un defined
by (5.11), (5.16), and (5.20) satisfy a discrete Gronwall inequality. An
elementary induction argument then leads to the assertion, observing the
local representation (5.5) of uh and the fact that, by the assumption on the
regularity of the given data, y ∈ Cm(I). The detailed arguments can be
found in Chapter 5 (Section 5.3) of Brunner (2004b); see also Zhang (1998)
and Brunner and Zhang (1999) for related results.

We now turn to the question of global and local superconvergence on I
and Ih, respectively: are there collocation parameters {ci} for which p = m
in (5.27) can be replaced by p∗ > m, and how large can p∗ become in (5.28)?



Assume that the solution of the second-kind delay VIE (4.6) is approximated

by the collocation solution uh ∈ S
(−1)
m−1(Ih) and the corresponding iterated

collocation solution,

uit
h(t) := g(t) + (Vuh)(t) + (Vθuh)(t), t ∈ I. (5.29)

Recall that uit
h(t) = uh(t) whenever t ∈ Xh; in particular, if cm = 1 then

tn ∈ Xh (n = 1, . . . , N) and hence uit
h(tn) = uh(tn).

It is well known (see, e.g., Brunner and van der Houwen (1986, Chapter 5))
that if Vθ = 0 (classical Volterra integral equation) and if the {ci} are
the Gauss (–Legendre) points (given by the zeros of the shifted Legendre
polynomial Pm(2s − 1)), then we only attain p∗ = m in (5.28): local
superconvergence of order p∗ = 2m is only possible if uh is replaced by
the iterated collocation solution uit

h . For the general delay VIE (4.6) with
θ(t) = qt (0 < q < 1) this is no longer true (see Brunner (1997a), Takama et

al. (2000), Muroya et al. (2002), Brunner (2004a)): for arbitrary q ∈ (0, 1)
we have p∗ < 2m when m ≥ 3. The results of Theorems 5.3 and 5.5
have recently been established in Brunner and Hu (2003); see also Brunner
(2004a, 2004b). Theorem 5.5 disproves a conjecture in Brunner (1997a) and
Brunner, Hu and Lin (2001a) for m > 2.

Theorem 5.3. Let the collocation parameters {ci} satisfy the orthogon-
ality condition

J0 :=

∫ 1

0

m∏

i=1

(s − ci) ds = 0. (5.30)

Then

‖y − uit
h‖∞ ≤ C(q)hm+1,

where uit
h is the iterated collocation approximation (5.29) corresponding to

the collocation solution uh ∈ S
(−1)
m−1(Ih) for (4.4). Here, m + 1 cannot, in

general, be replaced by m + 2.

We note that the most prominent set of parameters {ci} satisfying the
above orthogonality condition are the Gauss points.

Proof. We will sketch the principal steps leading to the above global super-
convergence result by using an approach different from the one in Brunner
and Hu (2003). For ease of notation we will do this for (4.4) with V = 0,
that is,

y(t) = g(t) + (Vθy)(t), t ∈ I.

In this case, the collocation error eh := y−uh satisfies the integral equation

eh(t) = δh(t) + (Vθeh)(t), t ∈ I, (5.31)



where the defect δh vanishes on Xh and inherits (piecewise, on each subinter-
val σn) the regularity of g and K2. Moreover, we have eit

h := y−uit
h = eh−δh.

Hence, it follows from the solution representation (4.5) in Theorem 4.2 that

eit
h(t) =

∞∑

j=1

∫ qjt

0
K2,j(t, s)δh(s) ds, t ∈ I. (5.32)

Here, K2,j(t, s) denotes the jth iterated kernel of the given kernel K2(t, s)
in Vθ (cf. Theorem 4.2)), and the infinite series converges uniformly on I.

Now let t = tn + vh, v ∈ [0, 1] be given and define, as in (5.1),

qj,n(v) := ⌊qj(n + v)⌋, γj,n(v) := qj(n + v) − qj,n(v) ∈ [0, 1), j ∈ N.

This allows us to write (5.32) in the form

eit
h(t) =

∞∑

j=1

(∫ tqj,n
(v)

0
K2,j(t, s)δh(s) ds (5.33)

+ h

∫ γj,n(v)

0
K2,j(t, tqj,n

(v) + sh)δh(tqj,n
(v) + sh) ds

)

.

The assertion in Theorem 5.3 now follows from the following observations.

(i) Since 0 < q < 1, we have qj,n(v) < N for all n ≤ N − 1 and v ∈ [0, 1].
Upon writing

∫ tqj,n
(v)

0
K2,j(t, s)δh(s) ds = h

qj,n(v)−1
∑

ℓ=0

∫ 1

0
K2,j(t, tℓ + sh)δh(tℓ + sh) ds,

we can again resort to the classical ‘quadrature error argument’ of Sections
3.4.2 and 3.4.3, consisting in replacing each of the above integrals by the sum
of the interpolatory m-point quadrature approximation based on the points
{tℓ + cih} and the corresponding quadrature error. As δh(tℓ + cih) = 0, and
Nh = T , it follows that the absolute values of the integrals are bounded
by CQhm+1, because the orthogonality condition (5.30) implies that the
quadrature formulas all possess a degree of precision of (at least) m.

(ii) The global convergence estimate given by Theorem 5.2 can be used in
(5.31) to obtain the estimate

‖δh‖∞ ≤ (1 + ‖Vθ‖)C(q)hm,

where

‖Vθ‖ := max
t∈Dθ

∫ θ(t)

0
|K2(t, s)|ds.



(iii) The iterated kernels K2,j(t, s) satisfy

|K2,j(t, s)| ≤
qj(j−1)/2

(j − 1)!
T j−1K̄j

θ , t ∈ D
(j)
θ

(cf. Lemma 4.3), where

K̄θ := max
(Dθ)

|K2(t, s)| and D
(j)
θ := {(t, s) : 0 ≤ s ≤ qjt, t ∈ I}.

This result implies that the infinite series involving the second terms on the
right-hand side of (5.33) converges uniformly and is O(hm+1).

In contrast to this result (the analogue of the global superconvergence
result for ODEs), collocation at the Gauss points no longer leads to local

superconvergence of order 2m on Ih when m ≥ 3, as the following theorem
shows. (Observe that for m = 2 we have 2m = m+2.) A first hint that this is
so may be divined from the following result comparing the collocation solu-
tion for the special pantograph equation (4.2) with the iterated collocation
solution (based on the same collocation parameters) for its integrated form,

y(t) = y0 +

∫ qt

0
(b/q)y(s) ds, t ∈ I.

Theorem 5.4. Let the following conditions hold.

(a) uh ∈ S
(−1)
m−1(Ih) is the collocation solution (with respect to Xh) to the

integrated form of y′(t) = by(qt), y(0) = y0 (b �= 0, y0 �= 0), and uit
h

denotes the corresponding iterated collocation solution.

(b) vh ∈ S
(0)
m (Ih) is the collocation solution (also with respect to Xh) to

y′(t) = by(qt), y(0) = y0.

Then we have, for all q ∈ (0, 1),

uit
h(t) �= vh(t) whenever t ∈ Ih \ {0}.

Remark. We remind the reader that for q = 1 we obtain uit
h(t) = vh(t) for

all t ∈ I: the ‘indirect’ collocation approximation uit
h has the same (super-)

convergence properties as the ‘direct’ one for the original ODE.

The proof of the following theorem is based on interpolatory projection
techniques and can be found in Brunner and Hu (2003).

Theorem 5.5. Assume that g, K1 and K2 in (4.6) are at least d ≥ m + 2
times continuously differentiable on their respective domains. Let uh ∈
S

(−1)
m−1(Ih) be the collocation solution corresponding to the Gauss points

{ci}, and let the iterated collocation solution be defined by (5.29). Then for
any q ∈ (0, 1) the order p∗ in the local estimate

‖y(t) − uit
h(t)‖h,∞ ≤ C(q)hp∗



cannot exceed m + 2, regardless of the value of d. More precisely, the
following is true.

(i) If q = 1/2 then

‖y − uit
h‖h,∞ ≤ C(q)

{

hm+2, if m is even,

hm+1, if m is odd.

(ii) For q ∈ (0, 1) \ {1/2}, we have

‖y − uit
h‖h,∞ ≤ C(q)hm+1,

for all m ≥ 2.

Remarks. (1) It is intuitively clear that the error constants C(q) in the
above order estimates will change their values dramatically as q → 1−. Thus
it is a challenging problem to find this dependence on q explicitly: even
insight obtained from a simple (linear) ‘toy problem’ would be valuable.

(2) For the more general second-kind DVIE (4.9), which we write now as

y(t) = g(t) + b(t)y(θ(t)) + (Wθy)(t), t ∈ I, θ(t) = qt, 0 < q < 1,

the existence of a unique collocation solution uh ∈ S
(−1)
m−1(Ih) is no longer

guaranteed in Phases I and II for all sufficiently small mesh diameters
h > 0. This is due to the presence of the terms b(tn,i)uh(θ(tn,i)) which,
using the local representation of uh on σqn,i

(cf. (5.5)), assume the form
b(tn,i)

∑m
j=1 Lj(γn,i)Uqn,i,j (i = 1, . . . , m). Thus, the matrix describing the

left-hand side of the difference equation (5.11) (Phase I) now has the form
Im − Bn − h(Bn + BI

n(q)), with

Bn := diag(b(tn,i))

(
Lj(γn,i)

(i, j = 1, . . . , m)

)

,

and hence its inverse will no longer exist for all sufficiently small h > 0.
(Compare also Liu (1995b), where this problem is studied for the case Wθ =
0, m = 1, and c1 = 1.) The superconvergence analysis for this more general
Volterra integral equation with proportional delay is yet to be established.

5.4. Proportional delay VIEs of the first kind

Turning to Volterra’s first-kind VIE with proportional delay θ(t) = qt (0 <
q < 1) of 1897,

(Wθy)(t) = g(t), t ∈ I := [0, T ], (5.34)

the linear algebraic systems whose solutions Un ∈ R
m define the local rep-

resentations (5.5) of its collocation solution uh ∈ S
(−1)
m−1(Ih) can be obtained



from (5.24)–(5.26): they are, respectively,

B̄I
n(q)Un = h−1gn, 0 ≤ n < qI , (5.35)

B̄II
n (q)Un = h−1gn − S̄II

n−1(q)Un−1, qI ≤ n < qII , (5.36)

and

BnUn = h−1gn − [S̄III
qn

(q)Uqn (5.37)

+
n−1∑

ℓ=qn+1

Bn,ℓUℓ + SIII
qn+1(q)Uqn+1, qII ≤ n ≤ N − 1.

Example 5.2. Consider the first-kind delay VIE (5.34), and assume that
its collocation solution is to be in the collocation space of Example 5.1.
Thus, for 0 ≤ n < qI the collocation equation at t = tn,1 = tn + c1h may be
written in the form

(∫ c1

γn,1

K(tn,1, tn + sh) ds

)

yn+1 = h−1g(tn,1).

If n ≥ qI = qII (see Example 5.1) we have, by (5.22),

(Wθuh)(tn,1) =

∫ tn

qtn,1

K(tn,1, s)uh(s) ds +

∫ tn,1

tn

K(tn,1, s)uh(s) ds,

and this can be written as
(∫ c1

0
K(tn,1, tn + sh) ds

)

yn+1

= h−1g(tn,1) −
(∫ 1

γn,1

K(tn,1, tqn,1 + sh) ds

)

yqn,1+1

−
n−1∑

ℓ=qn,1+1

(∫ 1

0
K(tn,1, tℓ + sh) ds

)

yℓ+1.

Setting

An :=

∫ c1

0
K(tn,1, tn + sh) ds,

Bn,ℓ :=

∫ 1

0
K(tn,1, tℓ + sh) ds (qn,1 + 1 ≤ ℓ ≤ n − 1),

and

Cn,qn :=

∫ 1

γn,1

K(tn,1, tqn,1 + sh) ds,

with qn,1 := ⌊q(n + c1)⌋ and γn,1 := q(n + c1) − qn,1, the above difference



equation for {yn+1} becomes

Anyn+1 +
n−1∑

ℓ=qn,1+1

Bn,ℓyℓ+1 + Cn,qnyqn,1+1 = h−1g(tn,1). (5.38)

If K(t, s) ≡ 1 the delay integral equation (5.34) reduces to
∫ t

qt
y(s) ds = g(t), t ∈ I, g(0) = 0,

and this is equivalent to the functional equation

y(t) − qy(qt) = g′(t), t ∈ I.

The corresponding collocation solution uh ∈ S
(−1)
0 (Ih) is thus determined

by the solution of the difference equation

c1yn+1 +
n−1∑

ℓ=qn,1+1

yℓ+1 + (1− γn,1)yqn,1+1 = h−1g(tn + c1h), n ≥ 0. (5.39)

In order to obtain the difference equation corresponding to collocation at
the Gauss points (c1 = 1/2) recall Tables 5.3 and 5.4 of Example 5.1 for the
values of qn,1 and γn,1.

What can be said about the attainable orders of global and local (super-)
convergence: what do the analogues of Theorems 5.2, 5.3 and 5.4 look like?
As we have briefly mentioned before, the analysis leading to answers for
these questions remains open. We only know from numerical evidence that
the condition

−1 ≤ ρm := (−1)m
m∏

i=1

1 − ci

ci
≤ 1

(which guarantees uniform convergence when q = 0 in Wθ with θ(t) = qt)
is no longer sufficient for this to be true. In particular, it is not yet known
for which values of c1 ∈ (0, 1] the solution of the simple difference equation
(5.38) remains uniformly bounded as N → ∞ (h → 0, Nh = T ) when
q ∈ (0, 1).

5.5. Volterra integro-differential equations with proportional delays

The collocation solution uh∈S
(0)
m (Ih) for the DVIDE (4.12) is determined by

u′
h(t) = a(t)uh(t) + b(t)uh(θ(t)) + (Wθuh)(t), t ∈ Xh, (5.40)

with initial condition uh(0) = y0. Since the collocation space is now a sub-
space of C(I) the system of difference equations arising in the computation
of uh has a somewhat more complex structure than the ones we encountered



in the previous section. To be somewhat more precise, the local represent-

ation of uh ∈ S
(0)
m (Ih) is now

uh(tn + vh) = yn + h

m∑

j=1

βj(v)Yn,j , v ∈ [0, 1], 0 ≤ n ≤ N − 1, (5.41)

where yn := uh(tn), Yn,j := u′
h(tn,j), and βj(v) :=

∫ 1
0 Lj(s) ds. Hence, the

key ingredients in the derivation of the difference equations are essentially
the same as in Section 5.2, that is, the terms of (Wθuh)(tn,i) corresponding
to Phases I, II, and III and containing the vectors Yn are described by
matrices similar to those in (5.24)–(5.26), except that instead of Lj(s) their
integrands contain the integrated Lagrange polynomials βj(s). However,
there are now also additional terms reflecting the continuity constraint of
uh at the interior mesh points t1, . . . , tN−1. We leave the details to the
reader; compare also Chapter 5 in Brunner (2004b). Instead, we present
an illustration from which the difference equations for arbitrary m ≥ 2 can
readily be deduced.

Example 5.3. Consider (5.40) and suppose that uh ∈ S
(0)
1 (Ih) (m = 1),

with 0 < c1 ≤ 1. The collocation equation defining this collocation solu-
tion uh,

u′
h(tn,1) = a(tn,1)uh(tn,1) + b(tn,1)uh(qtn,1) + (Wθuh)(tn,1),

where, by (5.41), uh(tn + vh) = yn + hvYn,1 (v ∈ [0, 1]), can be written as

Yn,1 = a(tn,1){yn + hc1Yn,1} + b(tn,1){yqn,1 + hγn,1Yqn,1} + (Wθuh)(tn,1),

with

(Wθuh)(tn,1) =

∫ tqn,1+1

tqn,1

K(tn,1, s)uh(s) ds +

∫ tn

tqn,1+1

K(tn,1, s)uh(s) ds

+ h

∫ c1

0
K(tn,1, tn + sh){yn + hsYn,1}ds.

Hence, the resulting difference equation is
(

1 − ha(tn,1)c1 − h2

∫ c1

0
K(tn,1, tn + sh)sds

)

Yn,1 (5.42)

=

[

hb(tn,1)γn,1 + h2

(∫ 1

γn,1

K(tn,1, tqn,1 + sh)sds

)]

Yqn,1

+ h2
n−1∑

ℓ=qn,1+1

(∫ 1

0
K(tn,1, tℓ + sh)sds

)

Yℓ,1 + ρn,



where

ρn := a(tn,1)yn +

(

b(tn,1) + h

∫ 1

γn,1

K(tn,1, tqn,1 + sh) ds

)

yqn,1

+ h

n−1∑

ℓ=qn,1+1

(∫ 1

0
K(tn,1, tℓ + sh) ds

)

yℓ

+ h

(∫ c1

0
K(tn,1, tn + sh) ds

)

yn.

The values of qn,1 and γn,1 can be found in Example 5.1. Observe also that
the above difference equation (5.42) can be reformulated as a difference
equation for {yn}, by setting Yn,1 = (yn+1 − yn)/h (cf. (5.41) with m = 1
and v = 1).

The problem of asymptotic stability for uh in special case correspond-
ing to W = 0 and constant coefficients a, b, i.e., the pantograph equation
(4.1), was studied in Buhmann et al. (1993) and Iserles (1994a) for q = 1/2.
For pantograph-type VIDEs the problem is completely open (see also Sec-
tion 5.7).

5.5.1. Optimal convergence estimates

The first theorem shows that the classical global order of convergence also
remains valid for delay VIDEs with vanishing proportional delay. The proof
is again based on a ‘Phase I–III’ Gronwall-type inductive argument; the
details can be found in Brunner (2004b, Section 5.5). See also Zhang (1998)
and Zhang and Brunner (1998) for some related results.

Theorem 5.6. Consider the delay VIDE (4.12) (which includes (4.14) and
the pantograph equation (4.1) as special cases) and assume that the given
functions a, b, K1 and K2 are at least m times continuously differentiable
on their respective domains. Then, for any θ(t) = qt with q ∈ (0, 1) and

for all sufficiently small h > 0, the unique collocation solution uh ∈ S
(0)
m (Ih)

given by (5.40) satisfies

‖yν) − u
(ν)
h ‖∞ := sup{|y(ν)(t) − u

(ν)
h (t)| : t ∈ I} ≤ Cν(q)h

m, ν = 0, 1,

and this holds for any set {ci} defining the collocation points Xh. The
constants Cν(q) depend on the {ci} and on q but not on h.

As for delay VIEs of the second kind with proportional delays, local

superconvergence results for analogous delay VIDEs differ sharply from the
classical results. However, the global order p = m + 1 is possible for the

collocation solution uh ∈ S
(0)
m (Ih). We summarize this results, and a

conjecture, below. Note, incidentally, that these delay VIDEs include the



pantograph equation and its counterpart with variable coefficients a and b
as special cases.

Theorem 5.7. Let uh ∈ S
(0)
m (Ih) be the collocation solution to the pro-

portional delay VIDE (4.12). If the given functions possess continuous de-
rivatives of at least order m+ 1 on their respective domains, and if the {ci}
satisfy the orthogonality condition (5.30) of Theorem 5.3, then

‖y − uh‖∞ ≤ C(q)hm+1

holds for all q ∈ (0, 1).

Proof. We write the error equation for (5.40),

e′h(t) = a(t)eh(t) + b(t)eh(qt) + δh(t) + (Veh)(t) + (Vθeh)(t),

t ∈ I, eh(0) = 0,

in integrated form. The analysis in Brunner and Hu (2003) (or, if a(t) ≡
0, V = 0, the one employed in the proof of Theorem 5.3) can then be applied
to the resulting delay integral equation for eh. We leave the details to the
reader.

Conjecture 5.8. The order of local superconvergence of uh ∈ S
(0)
m (Ih) on

Ih cannot exceed p∗ = m + 2. If the {ci} defining the collocation points Xh

are the Gauss points, then we have p∗ = m + 2 for any q ∈ (0, 1) and all
m ≥ 2. The same is true for the general pantograph equation corresponding
to Wθ = 0 in (4.14).

5.6. Collocation on geometric meshes

The special form of the delay function θ(t) = qt (0 < q < 1) suggests that
uit

h might possibly attain the classical optimal order of superconvergence
p∗ = 2m on Ih if Ih is a suitable geometric mesh and if collocation is at the
Gauss points. That this is (almost) so was verified in the paper by Brunner
et al. (2001a). We briefly describe this result and sketch its proof.

Assume that Ih is a geometric mesh defined by

Ih := {tn : tn = γN−nT, n = 0, 1, . . . , N ; γ ∈ (0, 1)}. (5.43)

The mesh parameter γ will depend, as is made precise below, on N (but not
on n), on q, and on m. This mesh possesses the following obvious properties.

(i) hn := tn+1 − tn = γN−n−1(1 − γ)T (n = 0, 1, . . . , N − 1).

(ii) max(n) hn = hN−1 = (1 − γ)T (for any N ∈ N). Hence, γ = γ(N) will

have to be chosen so that γ → 1−, as N → ∞, for all q ∈ (0, 1).



Let ρ ∈ N be defined by

ρ :=

⌊

ln(q)

ln(1 − 2m ln(N)
(m+1)N )

⌋

. (5.44)

It is the largest integer for which

q1/ρ ≤ 1 − 2m · ln(N)

(m + 1)N
.

Theorem 5.9 will reveal the motivation for introducing this integer ρ. Ob-
serve that for given (fixed) q ∈ (0, 1) and m ≥ 1, we have ρ > 1 for all
sufficiently large N . This is true because

1 − 2m · ln(N)

(m + 1)N
−→ 1−, as N → ∞,

for any m ∈ N.

Theorem 5.9. Let the following be satisfied.

(a) g ∈ C2m(I), K1 ∈ C2m(D), K2 ∈ C2m(Dθ).

(b) Ih is the geometric mesh described by (5.43) and (5.44), with γ = q1/ρ.

(c) uh ∈ S
(−1)
m−1(Ih) is the collocation solution to the delay VIE (4.6), with

the {ci} given by the Gauss points, and uit
h denotes the corresponding

iterated collocation solution.

Then, for all sufficiently large N , the resulting local order of convergence of
uit

h is given by

max
t∈Ih\{0}

|y(t) − uit
h(t)| ≤ C(q)N−(2m−εN ),

where

εN := logN

(
(2m · ln(N))2m

(2m + 1)(m + 1)2m

)

satisfies

lim
N→∞

εN = 0.

Proof. Since the proof is technically quite complex (using interpolatory
projection techniques), we will only exhibit one of its key ingredients.

Lemma 5.10. Let Ih be the geometric mesh (5.43), (5.44), with γ = q1/ρ.
Then:

(i) h0 ≤ CN−2m/(m+1);

(ii)
∑N−1

n=1 h2m+1
n ≤ CN−(2m−εN );

(iii) for ρ + 1 ≤ n ≤ N we have qtn = tn−ρ ∈ Ih \ {0}.



Note, incidentally, that proposition (iii) may be viewed as generalized
θ-invariance for this geometric mesh Ih.

Remarks. (1) Geometric meshes similar to the ones employed here were
introduced by Hu (1998) for piecewise polynomial collocation methods ap-
plied to VIDEs with weakly singular kernels, to obtain local superconver-
gence of the collocation solution on Ih.

(2) It is clear that analogous superconvergence results can be derived for

collocation solutions in S
(0)
m (Ih), with suitable geometric mesh Ih, for the

VIDE (4.12) with proportional delays. However, since this has not yet been
worked out in detail, the reader is invited to take up the challenge.

5.7. Equations with nonlinear vanishing delays

Suppose that the linear delay function θ(t) = qt (0 < q < 1) is replaced by
a nonlinear function θ satisfying the following conditions:

(ND1) θ ∈ C1(I), with θ(0) = 0 and θ(t) < t for t > 0;

(ND2) mint∈I θ′(t) = q0 > 0.

The (linear) proportional delay function θ(t) = qt (0 < q < 1) of course
satisfies (ND1) and (ND2), with θ′(t) = q =: q0 for all t. Similar nonlin-
ear vanishing delays were considered by Denisov and Korovin (1992) and
Denisov and Lorenzi (1995); see also Bellen et al. (2002).

While it seems clear from the foregoing convergence analyses that the
(super-) convergence results for collocation solutions remain valid for (3.8)
and (3.45) with such nonlinear vanishing delays, the details have yet to be
worked out.

5.8. Open problems

Our previous discussion of collocation methods has made it clear that even
for delay VFIEs and VFIDEs with the simple linear lag function θ(t) =
qt (0 < q < 1; t ∈ [0, T ]) we have a long way to go to understand the
dynamics of collocation solutions. We list below a selection of open prob-
lems whose solution would significantly advance our understanding of such
functional equations.

(1) Superconvergence analysis of collocation solutions in S
(0)
m (Ih), with uni-

form mesh Ih, for nonlinear Volterra functional integro-differential equa-
tions of Hammerstein type,

y′(t) = f(y(t), y(qt), y′(qt)) +

∫ t

qt
k(t − s)G(y(s), y′(s)) ds, 0 < q < 1,

in particular if f has one of the (Riccati, or rational) forms considered in
Iserles (1994b).



(2) Long-time integration of pantograph-type functional equations: how do
the error constants associated with the collocation solutions for DVIEs and
DVIDEs depend on q and grow as q ↑ 1−]?

(3) For which continuous convolution kernels k1 and k2 in

y(t) = 1 +

∫ t

0
k1(t − s)y(s) ds +

∫ qt

0
k2(t − s)y(s) ds, t ≥ 0, (5.45)

does

lim
t→∞

y(t) = 0

hold?
The answer to the analogous question for

y′(t) = ay(t) + by(qt) +

∫ t

0
k1(t − s)y(s) ds +

∫ qt

0
k2(t − s)y(s) ds, t ≥ 0,

(5.46)
where y(0) = y0 �= 0, is also open. In particular, for which continuous
convolution kernels k do we obtain asymptotic stability in (5.43) and (5.44)
when the sum of the two integral operators is replaced by the Volterra
operator corresponding to Wθ,

(Wqφ)(t) :=

∫ t

qt
k(t − s)φ(s) ds?

(4) Suppose that the given functions in (6.1) and (6.2) are such that the
solutions of these pantograph-type Volterra equations are asymptotically
stable. For which collocation parameters {ci} do the corresponding colloc-
ation solutions possess the same asymptotic behaviour?

6. Summary and outlook

6.1. Delay VIEs with weakly singular kernels

Owing to limitation of space we can only briefly touch upon the convergence
properties of collocation solutions to delay VIEs of the form

y(t) = g(t) + (Vαy)(t) + (Vθ,αy)(t), t ∈ (t0, T ], (6.1)

where the Volterra integral operators are based on kernels containing a weak
(i.e., unbounded but integrable) singularity:

(Vαy)(t) :=

∫ t

t0

(t − s)−αK1(t, s)y(s) ds,

(Vθ,αy)(t) :=

∫ θ(t)

t0

(t − s)−αK2(t, s)y(s) ds,



with 0 < α < 1, smooth Ki, and K1(t, t) �= 0 on I. The generalization of
Wθ in (3.22) is thus given by

(Wθ,αy)(t) :=

∫ t

θ(t)
(t − s)−αK(t, s)y(s) ds,

with K(t, t) �= 0 on I.
It follows from the theory of classical (non-delay) VIEs with weakly singu-

lar kernels (Brunner, Pedas and Vainikko 1999) that on uniform meshes the

collocation solution uh ∈ S
(−1)
m−1(Ih) to (6.1) has global order of convergence

of order p = 1−α, regardless of the regularity of the given functions or the
degree of the approximating piecewise polynomial uh. This is due to the low
regularity of y at t = t+0 : its first derivative behaves like C(t − t0)

−α near
t = t+0 . An analogous result holds for VIDEs with weakly singular kernels
(see Brunner, Pedas and Vainikko (2001b)): here, it is y′′ that is similarly
unbounded at t = t+0 .

The optimal order of global convergence, p = m, can only be restored if
the mesh Ih is suitably graded , i.e., if it is given by

Ih =

{

tn := t0 +

(
n

N

)r

(T − t0) : n = 0, 1, . . . , N

}

,

with grading exponent r ≥ m/(1−α) in the case of (6.1) with Vθ,α = 0. For
the analogous VIDE we must have r ≥ (m + 1 − α)/(2 − α) (see Brunner
(1985), Brunner, Pedas and Vainikko (1999, 2001)).

When solving weakly singular VIEs with non-vanishing delays, the mesh
Ih will obviously be the constrained mesh (3.3) where the local meshes are
now graded ones:

I
(µ)
h :=

{

t(µ)
n := ξµ +

(
n

N

)rµ

(ξµ+1 − ξµ) : n = 0, 1, . . . , N

}

,

with (local) grading exponents rµ > 1 depending on α and µ. Note that we
have ξµ+1 − ξµ = τ(ξµ+1) ≥ τ0 > 0.

Lemma 6.1. Let Ih be a θ-invariant mesh defined by (3.3) and (3.4), and

assume that the first local mesh I
(0)
h is optimally graded, that is,

I
(0)
h :=

{

t(0)n =

(
n

N

)r0

(ξ1 − t0) : n = 0, 1, . . . , N

}

,

with r0 = m/(1 − α).

(i) If the lag function θ is linear, then the optimal grading is inherited by

the macro-meshes I
(1)
h , . . . , I

(M)
h , with rµ = r0 for all µ.

(ii) If θ is nonlinear, the (optimal) grading is lost for I
(µ)
h (µ ≥ 1).



This result tells us that for the weakly singular Volterra integral or integro-
differential equations (2.30) and (2.31) with non-vanishing delays, colloca-

tion on θ-invariant meshes Ih with optimally graded initial mesh I
(0)
h will

exhibit the classical optimal global and local convergence orders if the delay

function θ is linear. For nonlinear θ, this will no longer be true.
Similar (positive and negative) results hold for piecewise polynomial col-

location solutions applied to neutral VFIDEs with weakly singular kernels,

d

dt
(a0y(t) − (Tθ,αy)(t)) = F (t, y(t), y(θ(t)), y′(θ(t))), (6.2)

with Tθ,α denoting one of the Volterra delay operators Vθ,α or Wθ,α (0 <
α < 1), when a0 = 1. An alternative numerical approach to such functional
integro-differential equations can be found in Ito and Turi (1991): it is based
on the semigroup framework underlying functional equations of this kind.

For VFIDEs of the first kind, corresponding to a0 = 0 in (6.2), e.g.,

d

dt
((Wθ,αy)(t)) = f(t), t ∈ (t0, T ],

the convergence analysis of collocation solutions is much more difficult, and
many questions remain to be answered. This is not so surprising when we

recall that collocation solutions in S
(−1)
m−1(Ih) for classical first-kind VIEs,

(Vy)(t) = g(t), t ∈ I := [0, T ], g(0) = 0,

converge to y uniformly on I only if the collocation parameters {ci} ⊂ (0, 1]
satisfy the stability condition

−1 ≤ ρm := (−1)m
m∏

i=1

1 − ci

ci
≤ 1

(see Brunner and van der Houwen (1986) and Kauthen and Brunner (1997)).
For the weakly singular version,

(Vαy)(t) = g(t), t ∈ I, 0 < α < 1,

it is not known for which sets {ci} the collocation solution is convergent (see
Brunner (1999b)). We note that Ito and Turi (1991) use their semigroup-
based method to solve NVFIDEs of the form (6.2) however, the question
regarding the attainable order of convergence on graded meshes remains
open.

6.2. Integral-algebraic Volterra equations with non-vanishing delays

The numerical solution of differential-algebraic equations (DAEs) with con-
stant delays by Runge–Kutta and collocation methods is studied in Ascher
and Petzold (1995) and in Hauber (1997). However, as we mentioned in the



discussion following equation (1.10), it is not clear how to obtain a numer-

ically properly formulated form of a delay DAE, or of an analogous system
of integral-algebraic or integro-differential-algebraic Volterra equations with
delay arguments. This is an important issue for the understanding of the
quantitative and – especially – the dynamical properties of collocation solu-
tions to functional equations like (1.10). Although some partial answers are
known for index-1 IAEs and IDAEs (see Chapter 8 in Brunner (2004b)), the
numerical analysis of DDAEs and analogous delay Volterra IAEs of higher
index is much more challenging. As März (2002a) has shown, the key to our
understanding may possibly be found in a suitable reformulation of integral-
algebraic equations as abstract (infinite-dimensional) DAEs, to which the
elegant analysis of März (1992, 2002b) can be extended.

6.3. VFIEs with state-dependent delays

The numerical analysis of DDEs with state-dependent delays is now well un-
derstood. The papers by Feldstein and Neves (1984), Neves and Thompson
(1992), Hartung and Turi (1995), Hartung, Herdman and Turi (1997),
Györi, Hartung and Turi (1998), and the monograph by Bellen and Zennaro
(2003) convey a fairly complete picture of its state of the arts.

For Volterra functional integro-differential equations with state-dependent
delays we have the substantial work by Tavernini (1978) on general one-
step methods. Cahlon and Nachman (1985) and Cahlon (1992) deal with
a class of numerical methods for solving analogous Volterra functional in-
tegral equations. However, except for the results in Cryer and Tavernini
(1972) (Euler’s method may be viewed as a simple collocation method) the
general (super-) convergence analysis for piecewise collocation methods is
still outstanding. For example, we do not know if the collocation solution

uh ∈ S
(0)
1 (Ih) for DVIDEs of the form

y′(t) = g(t) +

∫ t

t−τ(y(t))
k(t − s)G(y(s)) ds

(i.e., the analogue of (1.8)) exhibits O(h2)-superconvergence if collocation
is based on the Gauss point c1 = 1/2. We are similarly ignorant about
the optimal order of convergence on Ih for uit

h corresponding to the col-

location solution uh ∈ S
(−1)
0 (Ih) for Bélair’s state-dependent delay integral

equation (1.8).
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F. Brauer and C. Castillo-Chávez (2001), Mathematical Models in Population Bio-

logy and Epidemiology, Springer, New York.
F. Brauer and P. van den Driessche (2003), Some directions for mathematical

epidemiology, in Dynamical Systems and Their Applications in Biology, Cape



Breton 2001 (S. Ruan, G. S. K. Wolkowicz and J. Wu, eds), Vol. 36 of Fields

Institute Communications, AMS, Providence, RI, pp. 95–112.
H. Brezis and F. E. Browder (1975), ‘Existence theorems for nonlinear integral

equations of Hammerstein type’, Bull. Amer. Math. Soc. 81, 73–78.
H. Brunner (1985), ‘The numerical solution of weakly singular Volterra integral

equations by collocation on graded meshes’, Math. Comp. 45, 417–437.
H. Brunner (1992), ‘Implicitly linear collocation methods for nonlinear Volterra

integral equations’, Appl. Numer. Math. 9, 235–247.
H. Brunner (1994a), ‘Iterated collocation methods for Volterra integral equations

with delay arguments’, Math. Comp. 62, 581–599.
H. Brunner (1994b), ‘The numerical solution of neutral Volterra integro-differential

equations with delay arguments’, Ann. Numer. Math. 1, 309–322.
H. Brunner (1997a), ‘On the discretization of differential and Volterra integral

equations with variable delay’, BIT 37, 1–12.
H. Brunner (1997b), 1896–1996: One hundred years of Volterra integral equations

of the first kind, Appl. Numer. Math. 24, 83–93.
H. Brunner (1999a), ‘The discretization of neutral functional integro-differential

equations by collocation methods’, Z. Anal. Anwendungen 18, 393–406.
H. Brunner (1999b), ‘The numerical solution of weakly singular first-kind Volterra

integral equations with delay arguments’, Proc. Estonian Acad. Sci. Phys.

Math. 48, 90–100.
H. Brunner (2004a), ‘The discretization of Volterra functional integral equations

with proportional delays’, in Difference and Differential Equations, Changsha

2002 (S. Elaydi, G. Lada, J. Wu and X. Zou, eds), Vol. 42 of Fields Institute

Communications, AMS, Providence, RI. To appear.
H. Brunner (2004b), Collocation Methods for Volterra Integral and Related Func-

tional Differential Equations, Cambridge Monographs on Applied and Com-
putational Mathematics, Cambridge University Press. To appear.

H. Brunner and P. J. van der Houwen (1986), The Numerical Solution of Volterra

Equations, Vol. 3 of CWI Monographs, North-Holland, Amsterdam.
H. Brunner and Q.-Y. Hu (2003), ‘Superconvergence orders of iterated collocation

solutions for Volterra integral equations with variable delays’, preprint.
H. Brunner, Q.-Y. Hu and Q. Lin (2001a), ‘Geometric meshes in collocation meth-

ods for Volterra integral equations with proportional delays’, IMA J. Numer.

Anal. 21, 783–798.
H. Brunner and J. Ma (2004), ‘Primary discontinuities in solutions of neutral Vol-

terra functional integro-differential equations with weakly singular kernels’,
to appear.

H. Brunner, A. Pedas and G. Vainikko (1999), ‘The piecewise polynomial colloca-
tion method for nonlinear weakly singular Volterra equations’, Math. Comp.

68, 1079–1095.
H. Brunner, A. Pedas and G. Vainikko (2001b), ‘Piecewise polynomial collocation

methods for linear Volterra integro-differential equations with weakly singular
kernels’, SIAM J. Numer. Anal. 39, 957–982.

H. Brunner and R. Vermiglio (2003), ‘Stability of solutions of neutral functional
integro-differential equations and their discretizations’, Computing 71, 229–
245.



H. Brunner and W. Zhang (1999), ‘Primary discontinuities in solutions for delay
integro-differential equations’, Methods Appl. Anal. 6, 525–533.

M. Buhmann and A. Iserles (1991), ‘Numerical analysis of functional differen-
tial equations with a variable delay’, in Numerical Analysis, Dundee 1991

(D. F. Griffiths and G. A. Watson, eds), Vol. 260 of Pitman Research Notes

in Mathematics Series, Longman, Harlow, pp. 17–33.
M. Buhmann and A. Iserles (1992), ‘On the dynamics of a discretized neutral

equation’, IMA J. Numer. Anal. 12, 339–363.
M. Buhmann and A. Iserles (1993), ‘Stability of the discretized pantograph differ-

ential equation’, Math. Comp. 60, 575–589.
M. Buhmann, A. Iserles and S. P. Nørsett (1993), ‘Runge–Kutta methods for neut-

ral differential equations’, in Contributions in Numerical Mathematics, Singa-

pore 1993 (R. P. Agarwal, ed.), World Scientific, River Edge, NJ, pp. 85–98.
A. Burgstaller (1993), Kollokationsverfahren für Anfangswertprobleme, Disserta-

tion, Fakultät für Mathematik, Ludwig-Maximilians-Universität München.
A. Burgstaller (2000), ‘A modified collocation method for Volterra delay integro-

differential equations with multiple delays’, in Integral and Integrodiffer-

ential Equations: Theory, Methods and Applications (R. P. Agarwal and
D. O’Regan, eds), Gordon and Breach, Amsterdam, pp. 39–53.

J. A. Burns, E. M. Cliff and T. L. Herdman (1983a), ‘A state-space model for an
aeroelastic system’, 22nd IEEE Conference on Decision and Control, Vol. 3,
pp. 1074–1077.

J. A. Burns, E. M. Cliff and T. L. Herdman (1983b), ‘On integral transforms
appearing in the derivation of the equations of an aeroelastic system’, in
Lakshmikantham (1987), pp. 89–98.

J. A. Burns, T. L. Herdman and H. W. Stech (1983c), ‘Linear functional differential
equations as semigroups on product spaces’, SIAM J. Math. Anal. 14, 98–116.

J. A. Burns, T. L. Herdman and J. Turi (1987), ‘Nonatomic neutral functional
differential equations’, in Lakshmikantham (1987), pp. 635–646.

J. A. Burns, T. L. Herdman and J. Turi (1990), ‘Neutral functional integro-
differential equations with weakly singular kernels’, J. Math. Anal. Appl. 145,
371–401.

T. A. Burton (1983), Volterra Integral and Differential Equations, Academic Press,
New York.

S. Busenberg and K. L. Cooke (1980), ‘The effect of integral conditions in certain
equations modelling epidemics and population growth’, J. Math. Biol. 10,
13–32.

B. Cahlon (1990), ‘On the numerical stability of Volterra integral equations with
delay arguments’, J. Comput. Appl. Math. 33, 97–104.

B. Cahlon (1992), ‘Numerical solutions for functional integral equations with state-
dependent delay’, Appl. Numer. Math. 9, 291–305.

B. Cahlon (1995), ‘On the stability of Volterra integral equations with a lagging
argument’, BIT 35, 19–29.

B. Cahlon and L. J. Nachman (1985), ‘Numerical solutions of Volterra integral
equations with a solution dependent delay’, J. Math. Anal. Appl. 112, 541–
562.



B. Cahlon, L. J. Nachman and D. Schmidt (1984), ‘Numerical solution of Volterra
integral equations with delay arguments’, J. Integral Equations 7, 191–208.

B. Cahlon and D. Schmidt (1997), ‘Stability criteria for certain delay integral
equations of Volterra type’, J. Comput. Appl. Math. 84, 161–188.
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